NADPHnet: a novel strategy to predict compounds for regulation of NADPH metabolism via network-based methods

Fan J, Ye JB, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 2014;510:298–302.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell. 2014;55:253–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pandey AV, Fluck CE. NADPH P450 oxidoreductase: Structure, function, and pathology of diseases. Pharmacol Ther. 2013;138:229–54.

Article  CAS  PubMed  Google Scholar 

Rather GM, Pramono AA, Szekely Z, Bertino JR, Tedeschi PM. In cancer, all roads lead to NADPH. Pharmacol Ther. 2021;226:107864.

Article  CAS  PubMed  Google Scholar 

Cheng A, Xu T, You W, Wang T, Zhang D, Guo H, et al. A mitotic NADPH upsurge promotes chromosome segregation and tumour progression in aneuploid cancer cells. Nat Metab. 2023;5:1–18.

Yoon SG, Ghee JY, Yoo J, Park BY, Cha JJ, Kang YS, et al. Role of NADPH oxidases in renal aging. Gerontology. 2023;69:852–65.

Article  CAS  PubMed  Google Scholar 

Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, et al. NADPH oxidases: from molecular mechanisms to current inhibitors. J Med Chem. 2023;66:11632–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491:364–73.

Article  CAS  PubMed  Google Scholar 

Stanton RC. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life. 2012;64:362–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sofiullah SSM, Murugan DD, Muid SA, Seng WY, Kadir SZSA, Abas R, et al. Natural bioactive compounds targeting NADPH oxidase pathway in cardiovascular diseases. Molecules. 2023;28:1047.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ju HQ, Lin JF, Tian T, Xu RH. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther. 2020;5:1–12.

Google Scholar 

Zhang S, Gou S, Zhang Q, Yong X, Gan B, Jia D. FSP1 oxidizes NADPH to suppress ferroptosis. Cell Res. 2023;33:1–4.

Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood Am J Hematol. 2017;130:722–31.

CAS  Google Scholar 

DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378:2386–98.

Article  CAS  PubMed  Google Scholar 

He Y, Zheng MZ, Li Q, Hu ZX, Zhu HC, Liu JJ, et al. Asperspiropene A, a novel fungal metabolite as an inhibitor of cancer-associated mutant isocitrate dehydrogenase 1. Org Chem Front. 2017;4:1137–44.

Article  CAS  Google Scholar 

Zhang YJ, Wang ZL, Sprous D, Nabioullin R. In silico design and synthesis of piperazine-1-pyrrolidine-2,5-dione scaffold-based novel malic enzyme inhibitors. Bioorg Med Chem Lett. 2006;16:525–8.

Article  CAS  PubMed  Google Scholar 

Zhao Y, Jin J, Hu Q, Zhou HM, Yi J, Yu Z, et al. Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab. 2011;14:555–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niu X, Stancliffe E, Gelman SJ, Wang L, Schwaiger-Haber M, Rowles III JL, et al. Cytosolic and mitochondrial NADPH fluxes are independently regulated. Nat Chem Biol. 2023;19:1–9.

Tao RK, Zhao YZ, Chu HY, Wang AX, Zhu JH, Chen XJ, et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017;14:720–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovács IA, Luck K, Spirohn K, Wang Y, Pollis C, Schlabach S, et al. Network-based prediction of protein interactions. Nat Commun. 2019;10:1240.

Article  PubMed  PubMed Central  Google Scholar 

Wu ZR, Lu WQ, Wu D, Luo AQ, Bian HP, Li J, et al. In silico prediction of chemical mechanism of action via an improved network-based inference method. Br J Pharmacol. 2016;173:3372–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu ZR, Cheng FX, Li J, Li WH, Liu GX, Tang Y. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning. Brief Bioinformatics. 2017;18:333–47.

CAS  PubMed  Google Scholar 

Zhou M, Sun J, Yu Z, Wu Z, Li W, Liu G, et al. Investigation of anti-Alzheimer’s mechanisms of sarsasapogenin derivatives by network-based combining structure-based methods. J Chem Inf Model. 2023;63:2881–94.

Article  CAS  PubMed  Google Scholar 

Yu Z, Wu Z, Li W, Liu G, Tang Y. ADENet: a novel network-based inference method for prediction of drug adverse events. Brief Bioinformatics. 2022;23:bbab580.

Article  PubMed  Google Scholar 

Yu Z, Wu Z, Zhou M, Cao K, Li W, Liu G, et al. EDC-predictor: a novel strategy for prediction of endocrine-disrupting chemicals by integrating pharmacological and toxicological profiles. Environ Sci Technol. 2023;57:18013–25.

Article  CAS  PubMed  Google Scholar 

Tian L, Bashan A, Shi D-N, Liu Y-Y. Articulation points in complex networks. Nat Commun. 2017;8:14223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan C, Zeng L, Sun Y, Liu Y-Y. Finding key players in complex networks through deep reinforcement learning. Nat Mach Intell. 2020;2:317–24.

Article  PubMed  PubMed Central  Google Scholar 

Chen X, Liu MX, Yan GY. Drug-target interaction prediction by random walk on the heterogeneous network. Mol Biosyst. 2012;8:1970–8.

Article  CAS  PubMed  Google Scholar 

Duran C, Daminelli S, Thomas JM, Haupt VJ, Schroeder M, Cannistraci CV. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory. Brief Bioinform. 2018;19:1183–202.

Article  PubMed  Google Scholar 

Wu Z, Ma H, Liu Z, Zheng L, Yu Z, Cao S, et al. wSDTNBI: a novel network-based inference method for virtual screening. Chem Sci. 2022;13:1060–79.

Article  CAS  PubMed  Google Scholar 

Wu ZR, Lu WQ, Yu WW, Wang TDY, Li WH, Liu GX, et al. Quantitative and systems pharmacology 2. In silico polypharmacology of G protein-coupled receptor ligands via network-based approaches. Pharmacol Res. 2018;129:400–13.

Article  PubMed  Google Scholar 

Wu Z, Wang Q, Yang H, Wang J, Li W, Liu G, et al. Discovery of natural products targeting NQO1 via an approach combining network-based inference and identification of privileged substructures. J Chem Inf Model. 2021;61:2486–98.

Article  CAS  PubMed  Google Scholar 

Wang J, Luo L, Ding Q, Wu Z, Peng Y, Li J, et al. Development of a multi-target strategy for the treatment of vitiligo via machine learning and network analysis methods. Front Pharmacol. 2021;12:754175.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng Y, Wu Z, Yang H, Cai Y, Liu G, Li W, et al. Insights into mechanisms and severity of drug-induced liver injury via computational systems toxicology approach. Toxicol Lett. 2019;312:22–33.

留言 (0)

沒有登入
gif