Motor skill learning modulates striatal extracellular vesicles’ content in a mouse model of Huntington’s disease

MacDonald ME, Ambrose CM, Duyao MP, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971–83. https://doi.org/10.1016/0092-8674(93)90585-E.

Article  Google Scholar 

Mann DMA, Oliver R, Snowden JS. The topographic distribution of brain atrophy in Huntington’s disease and progressive supranuclear palsy. Acta Neuropathol. 1993;85(5):553–9. https://doi.org/10.1007/BF00230496/METRICS.

Article  CAS  PubMed  Google Scholar 

Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol. 1985;44(6):559–77. https://doi.org/10.1097/00005072-198511000-00003.

Article  CAS  PubMed  Google Scholar 

Dumas EM, Van Den Bogaard SJA, Hart EP, et al. Reduced functional brain connectivity prior to and after disease onset in Huntington’s disease. Neuroimage Clin. 2013;2(1):377–84. https://doi.org/10.1016/J.NICL.2013.03.001.

Article  PubMed  PubMed Central  Google Scholar 

Burgold J, Schulz-Trieglaff EK, Voelkl K et al. Cortical circuit alterations precede motor impairments in Huntington’s disease mice. Scientific Reports 2019 9:1. 2019;9(1):1–13. https://doi.org/10.1038/s41598-019-43024-w.

Bamford KA, Caine ED, Kido DK, Cox C, Shoulson I. A prospective evaluation of cognitive decline in early Huntington’s disease: functional and radiographic correlates. Neurology. 1995;45(10):1867–73. https://doi.org/10.1212/WNL.45.10.1867.

Article  CAS  PubMed  Google Scholar 

Paulsen JS, Ready RE, Hamilton JM, Mega MS, Cummings JL. Neuropsychiatric aspects of Huntington’s disease. J Neurol Neurosurg Psychiatry. 2001;71(3):310–4. https://doi.org/10.1136/JNNP.71.3.310.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28. https://doi.org/10.1016/S0140-6736(07)60111-1.

Article  CAS  PubMed  Google Scholar 

Tabrizi SJ, Estevez-Fraga C, van Roon-Mom WMC, et al. Potential disease modifying therapies for Huntington’s disease, lessons learned and future opportunities. Lancet Neurol. 2022;21(7):645. https://doi.org/10.1016/S1474-4422(22)00121-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mo C, Hannan AJ, Renoir T. Environmental factors as modulators of neurodegeneration: insights from gene–environment interactions in Huntington’s disease. Neurosci Biobehav Rev. 2015;52:178–92. https://doi.org/10.1016/J.NEUBIOREV.2015.03.003.

Article  PubMed  Google Scholar 

Sujkowski A, Hong L, Wessells RJ, Todi SV. The protective role of Exercise against Age-Related Neurodegeneration. Ageing Res Rev. 2022;74:101543. https://doi.org/10.1016/J.ARR.2021.101543.

Article  CAS  PubMed  Google Scholar 

Costa RM, Cohen D, Nicolelis MAL. Differential Corticostriatal plasticity during fast and slow motor skill learning in mice. Curr Biol. 2004;14(13):1124–34. https://doi.org/10.1016/J.CUB.2004.06.053.

Article  CAS  PubMed  Google Scholar 

Ungerleider LG, Doyon J, Karni A. Imaging brain plasticity during Motor Skill Learning. Neurobiol Learn Mem. 2002;78(3):553–64. https://doi.org/10.1006/NLME.2002.4091.

Article  PubMed  Google Scholar 

Fernández-García S, Conde-Berriozabal S, García-García E, et al. M2 cortex-dorsolateral striatum stimulation reverses motor symptoms and synaptic deficits in Huntington’s disease. Elife. 2020;9:1–24. https://doi.org/10.7554/ELIFE.57017.

Article  Google Scholar 

Fuller OK, Whitham M, Mathivanan S, Febbraio MA. The Protective Effect of Exercise in neurodegenerative diseases: the potential role of Extracellular vesicles. Cells. 2020;9(10). https://doi.org/10.3390/CELLS9102182.

Quek C, Hill AF. The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun. 2017;483(4):1178–86. https://doi.org/10.1016/J.BBRC.2016.09.090.

Article  CAS  PubMed  Google Scholar 

Yáñez-Mó M, Siljander PRM, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4(2015):1–60. https://doi.org/10.3402/JEV.V4.27066.

Article  Google Scholar 

Gassama Y, Favereaux A. Emerging roles of Extracellular vesicles in the Central Nervous System: Physiology, Pathology, and therapeutic perspectives. Front Cell Neurosci. 2021;15:7. https://doi.org/10.3389/FNCEL.2021.626043/BIBTEX.

Article  Google Scholar 

Rajendran L, Honsho M, Zahn TR, et al. Alzheimer’s disease β-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A. 2006;103(30):11172. https://doi.org/10.1073/PNAS.0603838103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Balaji V, Kaniyappan S, et al. The release and trans-synaptic transmission of tau via exosomes. Mol Neurodegener. 2017;12(1):1–25. https://doi.org/10.1186/S13024-016-0143-Y/FIGURES/9.

Article  Google Scholar 

Emmanouilidou E, Melachroinou K, Roumeliotis T, et al. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci. 2010;30(20):6838–51. https://doi.org/10.1523/JNEUROSCI.5699-09.2010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miguez A, Gomis C, Vila C, et al. Soluble mutant huntingtin drives early human pathogenesis in Huntington’s disease. Cell Mol Life Sci. 2023;80(8):238. https://doi.org/10.1007/S00018-023-04882-W.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma P, Mesci P, Carromeu C, et al. Exosomes regulate neurogenesis and circuit assembly. Proc Natl Acad Sci U S A. 2019;116(32):16086–94. https://doi.org/10.1073/PNAS.1902513116/SUPPL_FILE/PNAS.1902513116.SD11.XLSX.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solana-Balaguer J, Campoy-Campos G, Martín-Flores N, et al. Neuron-derived extracellular vesicles contain synaptic proteins, promote spine formation, activate TrkB mediated signaling, and preserve neuronal complexity. J Extracell Vesicles. 2023;12(9). https://doi.org/10.1002/jev2.12355.

López-Guerrero JA, Ripa I, Andreu S, Bello-Morales R. The role of Extracellular vesicles in demyelination of the Central Nervous System. Int J Mol Sci. 2020;21(23):1–18. https://doi.org/10.3390/IJMS21239111.

Article  Google Scholar 

Chuo STY, Chien JCY, Lai CPK. Imaging extracellular vesicles: current and emerging methods. J Biomed Sci. 2018;25(1):1–10. https://doi.org/10.1186/S12929-018-0494-5/FIGURES/3.

Article  Google Scholar 

van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology 2018 19:4. 2018;19(4):213–228. https://doi.org/10.1038/NRM.2017.125.

Frühbeis C, Helmig S, Tug S, Simon P, Krä Mer-Albers EM, Krämer-Albers EM. Physical exercise induces rapid release of small extracellular vesicles into the circulation. https://doi.org/10.3402/jev.v4.28239.

Martín-Flores N, Pérez-Sisqués L, Creus-Muncunill J et al. Synaptic RTP801 contributes to motor-learning dysfunction in Huntington’s disease. Cell Death & Disease 2020 11:7. 2020;11(7):1–15. https://doi.org/10.1038/s41419-020-02775-5.

Pérez-González R, Gauthier SA, Kumar A, Saito M, Saito M, Levy E. A method for isolation of Extracellular vesicles and characterization of Exosomes from Brain Extracellular Space. Methods Mol Biol. 2017;1545:139–51. https://doi.org/10.1007/978-1-4939-6728-5_10.

Article  CAS  PubMed  Google Scholar 

Gámez-Valero A, Campdelacreu J, Reñé R, Beyer K, Borràs FE. Comprehensive proteomic profiling of plasma-derived Extracellular vesicles from dementia with Lewy Bodies patients. Sci Rep. 2019;9(1). https://doi.org/10.1038/S41598-019-49668-Y.

Pérez-Sisqués L, Solana-Balaguer J, Campoy-Campos G, et al. Rtp801/redd1 is involved in neuroinflammation and modulates cognitive dysfunction in Huntington’s disease. Biomolecules. 2022;12(1). https://doi.org/10.3390/BIOM12010034/S1.

Shevchenko A, Tomas H, Havliš J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols 2007 1:6. 2007;1(6):2856–2860. https://doi.org/10.1038/NPROT.2006.468.

Andrés-Benito P, Gelpi E, Povedano M, et al. Combined transcriptomics and proteomics in Frontal Cortex Area 8 in Frontotemporal Lobar Degeneration linked to C9ORF72 expansion. J Alzheimers Dis. 2019;68(3):1287–307. https://doi.org/10.3233/JAD-181123.

Article  CAS  PubMed  Google Scholar 

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology 2008 26:12. 2008;26(12):1367–1372. https://doi.org/10.1038/NBT.1511.

Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M, Andromeda. A peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794–805. https://doi.org/10.1021/PR101065J/SUPPL_FILE/PR101065J_SI_002.ZIP.

Article  CAS 

留言 (0)

沒有登入
gif