Mini-heterochromatin domains constrain the cis-regulatory impact of SVA transposons in human brain development and disease

Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

Article  CAS  PubMed  Google Scholar 

de Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ostertag, E. M., Goodier, J. L., Zhang, Y. & Kazazian, H. H. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am. J. Hum. Genet. 73, 1444–1451 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, H. et al. SVA elements: a hominid-specific retroposon family. J. Mol. Biol. 354, 994–1007 (2005).

Article  CAS  PubMed  Google Scholar 

Kazazian, H. H. et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988).

Article  CAS  PubMed  Google Scholar 

Batzer, M. A. et al. Amplification dynamics of human-specific (HS) Alu family members. Nucleic Acids Res. 19, 3619–3623 (1991).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl Acad. Sci. USA 100, 5280–5285 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beck, C. R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Payer, L. M. & Burns, K. H. Transposable elements in human genetic disease. Nat. Rev. Genet. 20, 760–772 (2019).

Article  CAS  PubMed  Google Scholar 

Hancks, D. C. & Kazazian, H. H. SVA retrotransposons: evolution and genetic instability. Semin. Cancer Biol. 20, 234–245 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feusier, J. et al. Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res. 29, 1567–1577 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Bree, E. J. et al. A hidden layer of structural variation in transposable elements reveals potential genetic modifiers in human disease-risk loci. Genome Res. 32, 656–670 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Jönsson, M. E., Garza, R., Johansson, P. A. & Jakobsson, J. Transposable elements: a common feature of neurodevelopmental and neurodegenerative disorders. Trends Genet. 36, 610–623 (2020).

Article  PubMed  Google Scholar 

Hancks, D. C. & Kazazian, H. H. Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 22, 191–203 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Savage, A. L. et al. An evaluation of a SVA retrotransposon in the FUS promoter as a transcriptional regulator and its association to ALS. PLoS ONE 9, e90833 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Savage, A. L., Bubb, V. J., Breen, G. & Quinn, J. P. Characterisation of the potential function of SVA retrotransposons to modulate gene expression patterns. BMC Evol. Biol. 13, 101 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pontis, J. et al. Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 24, 724–735 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trizzino, M., Kapusta, A. & Brown, C. D. Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics 19, 468 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Trizzino, M. et al. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res. 27, 1623–1633 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patoori, S., Barnada, S. M., Large, C., Murray, J. I. & Trizzino, M. Young transposable elements rewired gene regulatory networks in human and chimpanzee hippocampal intermediate progenitors. Development 149, dev200413 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pfaff, A. L., Bubb, V. J., Quinn, J. P. & Koks, S. Reference SVA insertion polymorphisms are associated with Parkinson’s Disease progression and differential gene expression. NPJ Parkinsons Dis. 7, 44 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hancks, D. C. & Kazazian, H. H.Jr Roles for retrotransposon insertions in human disease. Mob. DNA 7, 9 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Nakamura, Y. et al. SVA retrotransposition in exon 6 of the coagulation factor IX gene causing severe hemophilia B. Int J. Hematol. 102, 134–139 (2015).

Article  CAS  PubMed  Google Scholar 

Vogt, J. et al. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol. 15, R80 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Pfaff, A. L., Singleton, L. M. & Kõks, S. Mechanisms of disease-associated SINE–VNTR–Alus. Exp. Biol. Med. (Maywood) 247, 756–764 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fröhlich, A. et al. CRISPR deletion of a SINE–VNTR–Alu (SVA_67) retrotransposon demonstrates its ability to differentially modulate gene expression at the MAPT locus. Front. Neurol. 14, 1273036 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Lee, L. V., Pascasio, F. M., Fuentes, F. D. & Viterbo, G. H. Torsion dystonia in Panay, Philippines. Adv. Neurol. 14, 137–151 (1976).

CAS  PubMed  Google Scholar 

Aneichyk, T. et al. Dissecting the causal mechanism of X-linked dystonia-parkinsonism by integrating genome and transcriptome assembly. Cell 172, 897–909 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bragg, D. C., Sharma, N. & Ozelius, L. J. X-linked dystonia-parkinsonism: recent advances. Curr. Opin. Neurol. 32, 604–609 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Makino, S. et al. Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am. J. Hum. Genet. 80, 393–406 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ito, J. et al. Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet. 13, e1006883 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Bragg, D. C. et al. Disease onset in X-linked dystonia-parkinsonism correlates with expansion of a hexameric repeat within an SVA retrotransposon in TAF1. Proc. Natl Acad. Sci. USA 114, E11020–E11028 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ito, N. et al. Decreased N-TAF1 expression in X-linked dystonia-parkinsonism patient-specific neural stem cells. Dis. Model Mech. 9, 451–462 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Lee, L. V. et al. The unique phenomenology of sex-linked dystonia parkinsonism (XDP, DYT3, ‘Lubag’). Int J. Neurosci. 121 (Suppl. 1), 3–11 (2011).

Falk, A. et al. Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS ONE 7, e29597 (2012).

留言 (0)

沒有登入
gif