Problems and Opportunities in the use of Bioelectrical Impedance Analysis for Assessing Body Composition During Ketogenic Diets: A Scoping Review

Wang ZM, Pierson RN, Heymsfield SB. The five-level model: A new approach to organizing body-composition research. Am J Clin Nutr. 1992;56(1):19–28.

Article  CAS  PubMed  Google Scholar 

Ellis KJ. Human body composition: in vivo methods. Physiol Rev United States. 2000;80:649–80.

CAS  Google Scholar 

Lohman TG, Milliken LA. ACSM’s Body composition assessment. Human Kinetics; 2020.

Google Scholar 

Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et al. Bioelectrical impedance analysis–part I: review of principles and methods. Clin Nutr England. 2004;23:1226–43.

Article  Google Scholar 

Campa F, Toselli S, Mazzilli M, Gobbo LA, Coratella G. Assessment of body composition in athletes: A narrative review of available methods with special reference to quantitative and qualitative bioimpedance analysis. Nutrients. 2021;13. Available from: https://www.mdpi.com/2072-6643/13/5/1620

Silva AM. Structural and functional body components in athletic health and performance phenotypes. Eur J Clin Nutr England. 2019;73:215–24.

Article  Google Scholar 

Ramos IE, Coelho GM, Lanzillotti HS, Marini E, Koury JC. Fat-free mass using bioelectrical impedance analysis as an alternative to dual-energy x-ray absorptiometry in calculating energy availability in female adolescent athletes. Int J Sport Nutr Exerc Metab United States. 2022;32:350–8.

Article  Google Scholar 

Campa F, Matias CN, Marini E, Heymsfield SB, Toselli S, Sardinha LB, et al. Identifying athlete body fluid changes during a competitive season with bioelectrical impedance vector analysis. Int J Sports Physiol Perform. 2020;15:361–7.

Article  PubMed  Google Scholar 

Marini E, Campa F, Buffa R, Stagi S, Matias CN, Toselli S, et al. Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes. Clin Nutr England. 2020;39:447–54.

Article  Google Scholar 

Nyboer J. Electrical impedance plethysmography; a physical and physiologic approach to peripheral vascular study. Circulation United States. 1950;2:811–21.

Article  CAS  Google Scholar 

Thomasset MA. Bioelectric properties of tissue. Impedance measurement in clinical medicine. Significance of curves obtained. Lyon Med France. 1962;94:107–18.

CAS  Google Scholar 

Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. J Appl Physiol United States. 1969;27:531–4.

Article  CAS  Google Scholar 

Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr United States. 1985;41:810–7.

Article  CAS  Google Scholar 

Kushner RF, Schoeller DA. Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr United States. 1986;44:417–24.

Article  CAS  Google Scholar 

Segal KR, Gutin B, Presta E, Wang J, Van Itallie TB. Estimation of human body composition by electrical impedance methods: a comparative study. J Appl Physiol United States. 1985;58:1565–71.

Article  CAS  Google Scholar 

Lukaski HC, Bolonchuk WW. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat Space Environ Med United States. 1988;59:1163–9.

CAS  Google Scholar 

Vazquez JA, Janosky JE. Validity of bioelectrical-impedance analysis in measuring changes in lean body mass during weight reduction. Am J Clin Nutr United States. 1991;54:970–5.

Article  CAS  Google Scholar 

Houtkooper LB, Lohman TG, Going SB, Howell WH. Why bioelectrical impedance analysis should be used for estimating adiposity. Am J Clin Nutr United States. 1996;64:436S-448S.

Article  CAS  Google Scholar 

Heitmann BL. Evaluation of body fat estimated from body mass index, skinfolds and impedance. A comparative study. Eur J Clin Nutr England. 1990;44:831–7.

CAS  Google Scholar 

Svendsen OL, Haarbo J, Heitmann BL, Gotfredsen A, Christiansen C. Measurement of body fat in elderly subjects by dual-energy x-ray absorptiometry, bioelectrical impedance, and anthropometry. Am J Clin Nutr. 1991;53(5):1117–23.

Article  CAS  PubMed  Google Scholar 

Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int United States. 1994;46:534–9.

Article  CAS  Google Scholar 

Janssen I, Heymsfield SB, Baumgartner RN, Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol United States. 2000;89:465–71.

Article  CAS  Google Scholar 

Murphy CH, Hector AJ, Phillips SM. Considerations for protein intake in managing weight loss in athletes. Eur J Sport Sci England. 2015;15:21–8.

Article  Google Scholar 

Stokes T, Hector AJ, Morton RW, McGlory C, Phillips SM. Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients Switzerland. 2018;10(2):180.

Article  Google Scholar 

Bartolomei S, Stout JR, Fukuda DH, Hoffman JR, Merni F. Block vs weekly undulating periodized resistance training programs in women. J strength Cond Res United States. 2015;29:2679–87.

Article  Google Scholar 

Osco KM, Campa F, Coratella G, Correa BD, de Alencar Silva BS, Dos Santos VR, et al. Resistance but not elastic tubes training improves bioimpedance vector patterns and body composition in older women: A randomized trial. Exp Gerontol England. 2021;154:111526.

Article  CAS  Google Scholar 

Oshima Y, Shiga T, Namba H, Kuno S. Estimation of whole-body skeletal muscle mass by bioelectrical impedance analysis in the standing position. Obes Res Clin Pract Netherlands. 2010;4:e1-82.

Article  Google Scholar 

Campa F, Gobbo LA, Stagi S, Cyrino LT, Toselli S, Marini E, et al. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. Eur J Appl Physiol. 2022. https://doi.org/10.1007/s00421-021-04879-y.

Article  PubMed  Google Scholar 

• Dellinger JR, Johnson BA, Benavides ML, Moore ML, Stratton MT, Harty PS, et al. Agreement of bioelectrical resistance, reactance, and phase angle values from supine and standing bioimpedance analyzers. Physiol Meas. 2021; Available from: http://iopscience.iop.org/article/10.1088/1361-6579/abe6fa. Highlights the lack of agreement among different BIA technologies, suggesting the need for specific reference values and predictive equations tailored to each bioelectrical device technology.

Stratton MT, Smith RW, Harty PS, Rodriguez C, Johnson BA, Dellinger JR, et al. Longitudinal agreement of four bioimpedance analyzers for detecting changes in raw bioimpedance during purposeful weight gain with resistance training. Eur J Clin Nutr England. 2021;75:1060–8.

Article  Google Scholar 

Campa F, Matias CN, Moro T, Cerullo G, Casolo A, Teixeira FJ, et al. Methods over materials: the need for sport-specific equations to accurately predict fat mass using bioimpedance analysis or anthropometry. Nutrients. 2023;15. Available from: https://www.mdpi.com/2072-6643/15/2/278.

•• Campa F, Coratella G, Cerullo G, Stagi S, Paoli S, Marini S, et al. New bioelectrical impedance vector references and phase angle centile curves in 4,367 adults: The need for an urgent update after 30 years. Clin Nutr England. 2023;42:1749–58. Presents the latest update of the BIVA method with specific references for adults, including the new percentile curves for the phase angle.

Article  Google Scholar 

Marini E, Sergi G, Succa V, Saragat B, Sarti S, Coin A, et al. ( Biva ) for assessing body composition in the elderly. J Nutr Health Aging. 2013;17:515–21.

Article  CAS  PubMed  Google Scholar 

Reljic D, Zarafat D, Jensen B, Herrmann HJ, Neurath MF, Konturek PC, et al. Phase angle and vector analysis from multifrequency segmental bioelectrical impedance analysis: new reference data for older adults. J Physiol Pharmacol an Off J Polish Physiol Soc. Poland; 2020;71.

Buffa R, Saragat B, Cabras S, Rinaldi AC, Marini E. Accuracy of specific BIVA for the assessment of body composition in the United States population. PLoS One United States. 2013;8:e58533.

Article  CAS  Google Scholar 

Campa F, Matias CN, Nunes CL, Monteiro CP, Francisco R, Jesus F, et al. Specific bioelectrical impedance vector analysis identifies body fat reduction after a lifestyle intervention in former elite athletes. Biology Basel. 2021;10(6):524.

Article  PubMed  PubMed Central  Google Scholar 

Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr England. 2013;67:789–96.

Article  CAS  Google Scholar 

Walters JK, Hoogwerf BJ, Reddy SS. The protein-sparing modified fast for obesity-related medical problems. Cleve Clin J Med United States. 1997;64:242–4.

Article  CAS  Google Scholar 

Wilder RJ. The effects of ketonemia on the course of epilepsy. Mayo Clin Proc. 2:307–8. Available from: https://api.semanticscholar.org/CorpusID:76722699

Peterman MG. The ketogenic diet in the treatment of epilepsy: a preliminary report. J Nerv Ment Dis. 1926;64. Available from: https://journals.lww.com/jonmd/fulltext/1926/07000/the_ketogenic_diet_in_the_treatment_of_epilepsy__a.74.aspx

Caprio M, Infante M, Moriconi E, Armani A, Fabbri A, Mantovani G, et al. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J Endocrinol Invest Italy. 2019;42:1365–86.

Article  CAS  Google Scholar 

Muscogiuri G, Barrea L, Laudisio D, Pugliese G, Salzano C, Savastano S, et al. The management of very low-calorie ketogenic diet in obesity outpatient clinic: a practical guide. J Transl Med. 2019;17:356. https://doi.org/10.1186/s12967-019-2104-z.

Article  PubMed  PubMed Central  Google Scholar 

Paoli A. Ketogenic diet for obesity: friend or foe? Int J Environ Res Public Health. 2014;11:2092–107. Available from: https://www.mdpi.com/1660-4601/11/2/2092

Paoli A, Bosco G, Camporesi EM, Mangar D. Ketosis, ketogenic diet and food intake control: a complex relationship. Front Psychol [Internet]. 2015;6. Available from: https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2015.00027

Dowis K, Banga S. The Potential health benefits of the ketogenic diet: a narrative review. Nutrients Switzerland. 2021;13(5):1654.

Article  CAS  Google Scholar 

Trimboli P, Castellana M, Bellido D, Casanueva FF. Confusion in the nomenclature of ketogenic diets blurs evidence. Rev Endocr Metab Disord Germany. 2020;21(1):1–3.

Article  Google Scholar 

Paoli A, Gorini S, Caprio M. The dark side of the spoon - glucose, ketones and COVID-19: a possible role for ketogenic diet? J Transl Med. 2020;18:441. https://doi.org/10.1186/s12967-020-02600-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Youm Y-H, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat Med. 2015;21:263–9. https://doi.org/10.1038/nm.3804.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif