New Frontiers: Umbilical Cord Mesenchymal Stem Cells Uncover Developmental Roots and Biological Underpinnings of Obesity Susceptibility

Fryar CD, Carroll MD, Afful J. Prevalence of overweight, obesity, and severe obesity among adults aged 20 and over: United States, 1960–1962 through 2017–2018. NCHS Health E-Stats. 2020. https://www.cdc.gov/nchs/data/hestat/obesity-adult-17-18/overweight-obesity-adults-H.pdf.

National Health and Nutrition Examination Survey 2017–March 2020 Prepandemic Data Files -- Development of Files and Prevalence Estimates for Selected Health Outcomes. Hyattsville, MD: 2021; https://doi.org/10.15620/cdc:106273

Ward ZJ, Long MW, Resch SC, Giles CM, Cradock AL, Gortmaker SL. Simulation of Growth Trajectories of Childhood Obesity into Adulthood. N Engl J Med. 2017;377(22):2145–53. https://doi.org/10.1056/NEJMoa1703860.

Article  PubMed  PubMed Central  Google Scholar 

Magarey AM, Daniels LA, Boulton TJ, Cockington RA. Predicting obesity in early adulthood from childhood and parental obesity. Int J Obes Relat Metab Disord. 2003;27(4):505–13. https://doi.org/10.1038/sj.ijo.0802251.

Article  CAS  PubMed  Google Scholar 

Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol. 2012;8(12):709–16. https://doi.org/10.1038/nrendo.2012.114.

Article  CAS  PubMed  Google Scholar 

Emerging Risk Factors C, Wormser D, Kaptoge S, Di Angelantonio E, Wood AM, Pennells L, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377(9771):1085–95. https://doi.org/10.1016/S0140-6736(11)60105-0.

Collaborators GBDO, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med. 2017;377(1):13–27. https://doi.org/10.1056/NEJMoa1614362.

Article  Google Scholar 

Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1(8489):1077–81. https://doi.org/10.1016/s0140-6736(86)91340-1.

Article  CAS  PubMed  Google Scholar 

Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia. 2019;62(10):1789–801. https://doi.org/10.1007/s00125-019-4951-9.

Article  PubMed  PubMed Central  Google Scholar 

Heslehurst N, Vieira R, Akhter Z, Bailey H, Slack E, Ngongalah L, et al. The association between maternal body mass index and child obesity: A systematic review and meta-analysis. PLoS Med. 2019;16(6):e1002817. https://doi.org/10.1371/journal.pmed.1002817.

Article  PubMed  PubMed Central  Google Scholar 

Voerman E, Santos S, Patro Golab B, Amiano P, Ballester F, Barros H, et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: An individual participant data meta-analysis. PLoS Med. 2019;16(2):e1002744. https://doi.org/10.1371/journal.pmed.1002744.

Article  PubMed  PubMed Central  Google Scholar 

Li A, Teo KK, Morrison KM, McDonald SD, Atkinson SA, Anand SS, et al. A genetic link between prepregnancy body mass index, postpartum weight retention, and offspring weight in early childhood. Obesity (Silver Spring). 2017;25(1):236–43. https://doi.org/10.1002/oby.21707.

Article  CAS  PubMed  Google Scholar 

Wesolowski SR, Mulligan CM, Janssen RC, Baker PR, Bergman BC, D’Alessandro A, et al. Switching obese mothers to a healthy diet improves fetal hypoxemia, hepatic metabolites, and lipotoxicity in non-human primates. Mol Metabolism. 2018;18:25–41. https://doi.org/10.1016/j.molmet.2018.09.008.

Article  CAS  Google Scholar 

Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115(3):e290–6. https://doi.org/10.1542/peds.2004-1808.

Article  PubMed  Google Scholar 

Claesson IM, Josefsson A, Olhager E, Oldin C, Sydsjo G. Effects of a gestational weight gain restriction program for obese women: Sibling pairs’ weight development during the first five years of life. Sex Reprod Healthc. 2018;17:65–74. https://doi.org/10.1016/j.srhc.2018.07.003.

Article  PubMed  Google Scholar 

Dabelea D, Hanson RL, Lindsay RS, Pettitt DJ, Imperatore G, Gabir MM, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. 2000;49(12):2208–11. https://doi.org/10.2337/diabetes.49.12.2208.

Article  CAS  PubMed  Google Scholar 

Entringer S, Buss C, Swanson JM, Cooper DM, Wing DA, Waffarn F, et al. Fetal programming of body composition, obesity, and metabolic function: the role of intrauterine stress and stress biology. J Nutr Metab. 2012;2012:632548. https://doi.org/10.1155/2012/632548.

Article  PubMed  PubMed Central  Google Scholar 

Moore BF, Sauder KA, Starling AP, Hebert JR, Shivappa N, Ringham BM, et al. Proinflammatory Diets during Pregnancy and Neonatal Adiposity in the Healthy Start Study. J Pediatr. 2018;195:121-7 e2. https://doi.org/10.1016/j.jpeds.2017.10.030.

Article  Google Scholar 

Donahue SM, Rifas-Shiman SL, Gold DR, Jouni ZE, Gillman MW, Oken E. Prenatal fatty acid status and child adiposity at age 3 y: results from a US pregnancy cohort. Am J Clin Nutr. 2011;93(4):780–8. https://doi.org/10.3945/ajcn.110.005801.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li LJ, Rifas-Shiman SL, Aris IM, Young JG, Mantzoros C, Hivert MF, et al. Associations of maternal and cord blood adipokines with offspring adiposity in Project Viva: is there an interaction with child age? Int J Obes (Lond). 2018;42(4):608–17. https://doi.org/10.1038/ijo.2017.256.

Article  CAS  PubMed  Google Scholar 

Harmon KA, Gerard L, Jensen DR, Kealey EH, Hernandez TL, Reece MS, et al. Continuous glucose profiles in obese and normal-weight pregnant women on a controlled diet: metabolic determinants of fetal growth. Diabetes Care. 2011;34(10):2198–204. https://doi.org/10.2337/dc11-0723.

Article  PubMed  PubMed Central  Google Scholar 

Wesolowski SR, Mulligan CM, Janssen RC, Baker PR 2nd, Bergman BC, D’Alessandro A, et al. Switching obese mothers to a healthy diet improves fetal hypoxemia, hepatic metabolites, and lipotoxicity in non-human primates. Mol Metab. 2018;18:25–41. https://doi.org/10.1016/j.molmet.2018.09.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waldrop SW, Niemiec S, Wood C, Gyllenhammer LE, Jansson T, Friedman JE, et al. Cord blood DNA methylation of immune and lipid metabolism genes is associated with maternal triglycerides and child adiposity. Obesity (Silver Spring). 2023. https://doi.org/10.1002/oby.23915.

Shankar K, Zhong Y, Kang P, Lau F, Blackburn ML, Chen J-R, et al. Maternal Obesity Promotes a Proinflammatory Signature in Rat Uterus and Blastocyst. Endocrinology. 2011;152(11):4158–70. https://doi.org/10.1210/en.2010-1078.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burdge GC, Hanson MA, Slater-Jefferies JL, Lillycrop KA. Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr. 2007;97(6):1036–46. https://doi.org/10.1017/S0007114507682920.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr. 2005;135(6):1382–6. https://doi.org/10.1093/jn/135.6.1382.

Article  CAS  PubMed  Google Scholar 

Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr. 2007;97(6):1064–73. https://doi.org/10.1017/S000711450769196X.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spurway J, Logan P, Pak S. The development, structure and blood flow within the umbilical cord with particular reference to the venous system. Australasian J Ultrasound Med. 2012;15(3):97–102. https://doi.org/10.1002/j.2205-0140.2012.tb00013.x.

Article  Google Scholar 

Subramanian A, Fong C-Y, Biswas A, Bongso A. Comparative Characterization of Cells from the Various Compartments of the Human Umbilical Cord Shows that the Wharton’s Jelly Compartment Provides the Best Source of Clinically Utilizable Mesenchymal Stem Cells. PLoS ONE. 2015;10(6):e0127992. https://doi.org/10.1371/journal.pone.0127992.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carlin R, Davis D, Weiss M, Schultz B, Troyer D. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol. 2006;4(1):8. https://doi.org/10.1186/1477-7827-4-8.

Article  CAS 

留言 (0)

沒有登入
gif