Human Muse cells isolated from preterm- and term-umbilical cord delivered therapeutic effects in rat bleomycin-induced lung injury model without immunosuppressant

Della Latta V, Cecchettini A, Del Ry S, Morales MA. Bleomycin in the setting of lung fibrosis induction: from biological mechanisms to counteractions. Pharmacol Res. 2015;97:122–30.

Article  CAS  PubMed  Google Scholar 

Claussen CA, Long EC. Nucleic acid recognition by metal complexes of bleomycin. Chem Rev. 1999;99:2797–816.

Article  CAS  PubMed  Google Scholar 

Sebti SM, Mignano JE, Jani JP, Srimatkandada S, Lazo JS. Bleomycin hydrolase: molecular cloning, sequencing, and biochemical studies reveal membership in the cysteine proteinase family. Biochemistry. 1989;28:6544–8.

Article  CAS  PubMed  Google Scholar 

Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: A useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol. 2008;40:362–82.

Article  CAS  PubMed  Google Scholar 

Tourneux P, Markham N, Seedorf G, Balasubramaniam V, Abman SH. Inhaled nitric oxide improves lung structure and pulmonary hypertension in a model of bleomycin-induced bronchopulmonary dysplasia in neonatal rats. Am J Physiol Lung Cell Mol Physiol. 2009;297:L1103–11.

Article  CAS  PubMed  Google Scholar 

Ruschkowski BA, Esmaeil Y, Daniel K, Gaudet C, Yeganeh B, Grynspan D, Jankov RP. Thrombospondin-1 plays a major pathogenic role in experimental and human bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2022;205:685–99.

Article  CAS  PubMed  Google Scholar 

Ayilya BL, Balde A, Ramya M, Benjakul S, Kim SK, Nazeer RA. Insights on the mechanism of bleomycin to induce lung injury and associated in vivo models: a review. Int Immunopharmacol. 2023;121:110493.

Article  CAS  PubMed  Google Scholar 

Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276:357–68.

Article  PubMed  Google Scholar 

Morty RE. Recent advances in the pathogenesis of BPD. Semin Perinatol. 2018;42:404–12.

Article  PubMed  Google Scholar 

Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2007;292:L1073–84.

Article  CAS  PubMed  Google Scholar 

Mobius MA, Thebaud B. Bronchopulmonary dysplasia: Where have all the stem cells gone?: Origin and (Potential) function of resident lung stem cells. Chest. 2017;152:1043–52.

Article  PubMed  Google Scholar 

Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.

Article  CAS  PubMed  Google Scholar 

Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50.

Article  CAS  PubMed  Google Scholar 

Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.

Article  CAS  PubMed  Google Scholar 

Weiss DJ, Chambers D, Giangreco A, Keating A, Kotton D, Lelkes PI, Wagner DE, Prockop DJ. Cells ATSSoS, Cell T. An official American Thoracic Society workshop report: stem cells and cell therapies in lung biology and diseases. Ann Am Thorac Soc. 2015;12:79–97.

Article  Google Scholar 

Vats A, Chaturvedi P. The regenerative power of stem cells: treating bleomycin-induced lung fibrosis. Stem Cells Cloning. 2023;16:43–59.

PubMed  PubMed Central  Google Scholar 

Egea-Zorrilla A, Vera L, Saez B, Pardo-Saganta A. Promises and challenges of cell-based therapies to promote lung regeneration in idiopathic pulmonary fibrosis. Cells. 2022;11:2595.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Wang F, Huang Z, Wu Y, Geng J, Wang Y. Clinical applications of mesenchymal stromal cell-based therapies for pulmonary diseases: an update and concise review. Int J Med Sci. 2021;18:2849–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Omar SA, Abdul-Hafez A, Ibrahim S, Pillai N, Abdulmageed M, Thiruvenkataramani RP, Mohamed T, Madhukar BV, Uhal BD. Stem-cell therapy for bronchopulmonary dysplasia (BPD) in newborns. Cells. 2022;11:1275.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhuxiao R, Fang X, Wei W, Shumei Y, Jianlan W, Qiuping L, Jingjun P, Chuan N, Yongsheng L, Zhichun F, et al. Prevention for moderate or severe BPD with intravenous infusion of autologous cord blood mononuclear cells in very preterm infants-a prospective non-randomized placebo-controlled trial and two-year follow up outcomes. EClinicalMedicine. 2023;57:101844.

Article  PubMed  PubMed Central  Google Scholar 

Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, Goda M, Akashi H, Inutsuka A, Niwa A, et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A. 2010;107:8639–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamashita T, Kushida Y, Abe K, Dezawa M. Non-Tumorigenic pluripotent reparative muse cells provide a new therapeutic approach for neurologic diseases. Cells. 2021;10:961.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wakao S, Oguma Y, Kushida Y, Kuroda Y, Tatsumi K, Dezawa M. Phagocytosing differentiated cell-fragments is a novel mechanism for controlling somatic stem cell differentiation within a short time frame. Cell Mol Life Sci. 2022;79:542.

Article  CAS  PubMed  Google Scholar 

Kuroda Y, Dezawa M. Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine. Anat Rec. 2014;297:98–110.

Article  CAS  Google Scholar 

Sato T, Wakao S, Kushida Y, Tatsumi K, Kitada M, Abe T, Niizuma K, Tominaga T, Kushimoto S, Dezawa M. A novel type of stem cells double-positive for SSEA-3 and CD45 in human peripheral blood. Cell Transpl. 2020;29:963689720923574.

Article  Google Scholar 

Yamada Y, Wakao S, Kushida Y, Minatoguchi S, Mikami A, Higashi K, Baba S, Shigemoto T, Kuroda Y, Kanamori H, et al. S1P–S1PR2 axis mediates homing of muse cells into damaged heart for long-lasting tissue repair and functional recovery after acute myocardial infarction. Circ Res. 2018;122:1069–83.

Article  CAS  PubMed  Google Scholar 

Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H, Tanimura Y, Tsuchiyama K, Kikuchi T, Goda M, et al. Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci U S A. 2011;108:9875–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsuchiyama K, Wakao S, Kuroda Y, Ogura F, Nojima M, Sawaya N, Yamasaki K, Aiba S, Dezawa M. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts. J Invest Dermatol. 2013;133:2425–35.

Article  CAS  PubMed  Google Scholar 

Amin M, Kushida Y, Wakao S, Kitada M, Tatsumi K, Dezawa M. Cardiotrophic growth factor-driven induction of human Muse cells into cardiomyocyte-like phenotype. Cell Transpl. 2018;27:285–98.

Article  Google Scholar 

Kuroda Y, Oguma Y, Hall K, Dezawa M. Endogenous reparative pluripotent Muse cells with a unique immune privilege system: hint at a new strategy for controlling acute and chronic inflammation. Front Pharmacol. 2022;13:1027961.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noda T, Nishigaki K, Minatoguchi S. Safety and efficacy of human muse cell-based product for acute myocardial infarction in a first-in-human trial. Circ J. 2020;84:1189–92.

Article  CAS  PubMed  Google Scholar 

Niizuma K, Osawa SI, Endo H, Izumi SI, Ataka K, Hirakawa A, Iwano M, Tominaga T. Randomized placebo-controlled trial of CL2020, an allogenic muse cell-based product, in subacute ischemic stroke. J Cereb Blood Flow Metab. 2023;43:2029–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujita Y, Nohara T, Takashima S, Natsuga K, Adachi M, Yoshida K, Shinkuma S, Takeichi T, Nakamura H, Wada O, et al. Intravenous allogeneic multilineage-differentiating stress-enduring cells in adults with dystrophic epidermolysis bullosa: a phase 1/2 open-label study. J Eur Acad Dermatol Venereol. 2021;35:e528–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamashita T, Nakano Y, Sasaki R, Tadokoro K, Omote Y, Yunoki T, Kawahara Y, Matsumoto N, Taira Y, Matsuoka C, et al. Safety and clinical effects of a muse cell-based product in patients with amyotrophic lateral sclerosis: results of a phase 2 clinical trial. Cell Transplant. 2023;32:9636897231214370.

Article  PubMed  Google Scholar 

Ogura F, Wakao S, Kuroda Y, Tsuchiyama K, Bagheri M, Heneidi S, Chazenbalk G, Aiba S, Dezawa M. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev. 2014;23:717–28.

Article  CAS 

留言 (0)

沒有登入
gif