Possibilities and efficiency of MSC co-transfection for gene therapy

Kulus M, Sibiak R, Stefańska K, Zdun M, Wieczorkiewicz M, Piotrowska-Kempisty H, et al. Mesenchymal stem/stromal cells derived from human and animal perinatal tissues-origins, characteristics, signaling pathways, and clinical trials. Cells. 2021. https://doi.org/10.3390/cells10123278.

Article  PubMed  PubMed Central  Google Scholar 

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7. https://doi.org/10.1080/14653240600855905.

Article  CAS  PubMed  Google Scholar 

Caplan AI. New MSC: MSCs as pericytes are sentinels and gatekeepers. J Orthop Res. 2017;35:1151–9. https://doi.org/10.1002/jor.23560.

Article  PubMed  Google Scholar 

Search for: mesenchymal stem cells | Card Results | ClinicalTrials.gov. 06.02.2024. https://clinicaltrials.gov/search?intr=mesenchymal%20stem%20cells. Accessed 7 Feb 2024.

Wang Z, Chai C, Wang R, Feng Y, Huang L, Zhang Y, et al. Single-cell transcriptome atlas of human mesenchymal stem cells exploring cellular heterogeneity. Clin Transl Med. 2021;11: e650. https://doi.org/10.1002/ctm2.650.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanawa M, Igarashi A, Ronald VS, Higashi Y, Kurihara H, Sugiyama M, et al. Age-dependent decrease in the chondrogenic potential of human bone marrow mesenchymal stromal cells expanded with fibroblast growth factor-2. Cytotherapy. 2013;15:1062–72. https://doi.org/10.1016/j.jcyt.2013.03.015.

Article  CAS  PubMed  Google Scholar 

Siegel G, Kluba T, Hermanutz-Klein U, Bieback K, Northoff H, Schäfer R. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med. 2013;11:146. https://doi.org/10.1186/1741-7015-11-146.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301. https://doi.org/10.1634/stemcells.2005-0342.

Article  CAS  PubMed  Google Scholar 

Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater. 2015;14:1262–8. https://doi.org/10.1038/nmat4444.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calcat-I-Cervera S, Rendra E, Scaccia E, Amadeo F, Hanson V, Wilm B, et al. Harmonised culture procedures minimise but do not eliminate mesenchymal stromal cell donor and tissue variability in a decentralised multicentre manufacturing approach. Stem Cell Res Ther. 2023;14:120. https://doi.org/10.1186/s13287-023-03352-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boura JS, Santos FD, Gimble JM, Cardoso CMP, Madeira C, Cabral JMS, Da Silva CL. Direct head-to-head comparison of cationic liposome-mediated gene delivery to mesenchymal stem/stromal cells of different human sources: a comprehensive study. Hum Gene Ther Methods. 2013;24:38–48. https://doi.org/10.1089/hgtb.2012.185.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kozisek T, Samuelson L, Hamann A, Pannier AK. Systematic comparison of nonviral gene delivery strategies for efficient co-expression of two transgenes in human mesenchymal stem cells. J Biol Eng. 2023;17:76. https://doi.org/10.1186/s13036-023-00394-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liew A, André FM, Lesueur LL, de Ménorval M-A, O’Brien T, Mir LM. Robust, efficient, and practical electrogene transfer method for human mesenchymal stem cells using square electric pulses. Hum Gene Ther Methods. 2013;24:289–97. https://doi.org/10.1089/hgtb.2012.159.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calabrese G, Giuffrida R, Lo Furno D, Parrinello NL, Forte S, Gulino R, et al. Potential effect of CD271 on human mesenchymal stromal cell proliferation and differentiation. Int J Mol Sci. 2015;16:15609–24. https://doi.org/10.3390/ijms160715609.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barilani M, Banfi F, Sironi S, Ragni E, Guillaumin S, Polveraccio F, et al. Low-affinity nerve growth factor receptor (CD271) heterogeneous expression in adult and fetal mesenchymal stromal cells. Sci Rep. 2018;8:9321. https://doi.org/10.1038/s41598-018-27587-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee NE, Kim SJ, Yang S-J, Joo S-Y, Park H, Lee KW, et al. Comparative characterization of mesenchymal stromal cells from multiple abdominal adipose tissues and enrichment of angiogenic ability via CD146 molecule. Cytotherapy. 2017;19:170–80. https://doi.org/10.1016/j.jcyt.2016.11.002.

Article  CAS  PubMed  Google Scholar 

Yang Z, Dong P, Fu X, Li Q, Ma S, Wu D, et al. CD49f acts as an inflammation sensor to regulate differentiation, adhesion, and migration of human mesenchymal stem cells. Stem Cells. 2015;33:2798–810. https://doi.org/10.1002/stem.2063.

Article  CAS  PubMed  Google Scholar 

Yang Z, Ma S, Cao R, Liu L, Cao C, Shen Z, et al. CD49fhigh defines a distinct skin mesenchymal stem cell population capable of hair follicle epithelial cell maintenance. J Invest Dermatol. 2020;140:544-555.e9. https://doi.org/10.1016/j.jid.2019.08.442.

Article  CAS  PubMed  Google Scholar 

Kuçi S, Kuçi Z, Schäfer R, Spohn G, Winter S, Schwab M, et al. Molecular signature of human bone marrow-derived mesenchymal stromal cell subsets. Sci Rep. 2019;9:1774. https://doi.org/10.1038/s41598-019-38517-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pachón-Peña G, Yu G, Tucker A, Wu X, Vendrell J, Bunnell BA, Gimble JM. Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. J Cell Physiol. 2011;226:843–51. https://doi.org/10.1002/jcp.22408.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowles AC, Kouroupis D, Willman MA, Perucca Orfei C, Agarwal A, Correa D. Signature quality attributes of CD146+ mesenchymal stem/stromal cells correlate with high therapeutic and secretory potency. Stem Cells. 2020;38:1034–49. https://doi.org/10.1002/stem.3196.

Article  CAS  PubMed  Google Scholar 

Ren H, Zhang L, Zhang X, Yi C, Wu L. Specific lipid magnetic sphere sorted CD146-positive bone marrow mesenchymal stem cells can better promote articular cartilage damage repair. BMC Musculoskelet Disord. 2024;25:253. https://doi.org/10.1186/s12891-024-07381-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Russo E, Lee J-Y, Nguyen H, Corrao S, Anzalone R, La Rocca G, Borlongan CV. Energy metabolism analysis of three different mesenchymal stem cell populations of umbilical cord under normal and pathologic conditions. Stem Cell Rev and Rep. 2020;16:585–95. https://doi.org/10.1007/s12015-020-09967-8.

Article  CAS  PubMed  Google Scholar 

Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M, Ghadirkhomi E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells. 2014;7:118–26. https://doi.org/10.15283/ijsc.2014.7.2.118.

Article  PubMed  PubMed Central  Google Scholar 

Yu K-R, Yang S-R, Jung J-W, Kim H, Ko K, Han DW, et al. CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells. 2012;30:876–87. https://doi.org/10.1002/stem.1052.

Article  CAS  PubMed  Google Scholar 

Kim M, Bae YK, Um S, Kwon JH, Kim G-H, Choi SJ, et al. A small-sized population of human umbilical cord blood-derived mesenchymal stem cells shows high stemness properties and therapeutic benefit. Stem Cells Int. 2020;2020:5924983. https://doi.org/10.1155/2020/5924983.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohamed-Ahmed S, Fristad I, Lie SA, Suliman S, Mustafa K, Vindenes H, Idris SB. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther. 2018;9:168. https://doi.org/10.1186/s13287-018-0914-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madeira C, Ribeiro SC, Pinheiro ISM, Martins SAM, Andrade PZ, da Silva CL, Cabral JMS. Gene delivery to human bone marrow mesenchymal stem cells by microporation. J Biotechnol. 2011;151:130–6. https://doi.org/10.1016/j.jbiotec.2010.11.002.

Article  CAS  PubMed  Google Scholar 

Yang X, Wen X, Dai J, Chen Y, Ding W, Wang J, et al. Probing the intracellular delivery of nanoparticles into hard-to-transfect cells. ACS Nano. 2022;16:8751–65. https://doi.org/10.1021/acsnano.1c07648.

Article  CAS  PubMed  Google Scholar 

Chan J, O’Donoghue K, de la Fuente J, Roberts IA, Kumar S, Morgan JE, Fisk NM. Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells. 2005;23(1):93–102. https://doi.org/10.1634/stemcells.2004-0138.

Article  CAS  PubMed  Google Scholar 

Kretzmann JA, Evans CW, Norret M, Blancafort P, Swaminathan IK. Non-viral methodology for efficient co-transfection. Methods Mol Biol. 2018;1767:241–54. https://doi.org/10.1007/978-1-4939-7774-1_13.

Article 

留言 (0)

沒有登入
gif