Exonuclease editor promotes precision of gene editing in mammalian cells

Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26(1):52–64.

Article  CAS  PubMed  Google Scholar 

Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karanam K, Kafri R, Loewer A, Lahav G. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell. 2012;47(2):320–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 2008;9(4):297–308.

Article  CAS  PubMed  Google Scholar 

Mao Z, Bozzella M, Seluanov A, Gorbunova V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst). 2008;7(10):1765–71.

Article  CAS  PubMed  Google Scholar 

Liang F, Han M, Romanienko PJ, Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. 1998;95(9):5172–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jensen NM, Dalsgaard T, Jakobsen M, Nielsen RR, Sorensen CB, Bolund L, Jensen TG. An update on targeted gene repair in mammalian cells: methods and mechanisms. J Biomed Sci. 2011;18:10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015;33(5):543–8.

Article  CAS  PubMed  Google Scholar 

Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33(5):538–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canny MD, Moatti N, Wan LCK, Fradet-Turcotte A, Krasner D, Mateos-Gomez PA, Zimmermann M, Orthwein A, Juang YC, Zhang W, et al. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol. 2018;36(1):95–102.

Article  CAS  PubMed  Google Scholar 

Jayavaradhan R, Pillis DM, Goodman M, Zhang F, Zhang Y, Andreassen PR, Malik P. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nat Commun. 2019;10(1):2866.

Article  PubMed  PubMed Central  Google Scholar 

Riesenberg S, Chintalapati M, Macak D, Kanis P, Maricic T, Paabo S. Simultaneous precise editing of multiple genes in human cells. Nucleic Acids Res. 2019;47(19):e116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robert F, Barbeau M, Ethier S, Dostie J, Pelletier J. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med. 2015;7:93.

Article  PubMed  PubMed Central  Google Scholar 

Paulsen BS, Mandal PK, Frock RL, Boyraz B, Yadav R, Upadhyayula S, Gutierrez-Martinez P, Ebina W, Fasth A, Kirchhausen T, et al. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing. Nat Biomed Eng. 2017;1(11):878–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma M, Zhuang F, Hu X, Wang B, Wen XZ, Ji JF, Xi JJ. Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system. Cell Res. 2017;27(4):578–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li Y, Neri D, Robinson MD, Ciaudo C, Hall J, et al. Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife. 2018;7:e33761.

Article  PubMed  PubMed Central  Google Scholar 

Carlson-Stevermer J, Abdeen AA, Kohlenberg L, Goedland M, Molugu K, Lou M, Saha K. Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat Commun. 2017;8(1):1711.

Article  PubMed  PubMed Central  Google Scholar 

Aird EJ, Lovendahl KN, St Martin A, Harris RS, Gordon WR. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol. 2018;1:54.

Article  PubMed  PubMed Central  Google Scholar 

Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 2014;3:e04766.

Article  PubMed  PubMed Central  Google Scholar 

Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep. 2016;14(6):1555–66.

Article  CAS  PubMed  Google Scholar 

Arnoult N, Correia A, Ma J, Merlo A, Garcia-Gomez S, Maric M, Tognetti M, Benner CW, Boulton SJ, Saghatelian A, et al. Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature. 2017;549(7673):548–52.

Article  PubMed  PubMed Central  Google Scholar 

Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20(11):698–714.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495–506.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schrank BR, Aparicio T, Li Y, Chang W, Chait BT, Gundersen GG, Gottesman ME, Gautier J. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559(7712):61–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeh CD, Richardson CD, Corn JE. Advances in genome editing through control of DNA repair pathways. Nat Cell Biol. 2019;21(12):1468–78.

Article  CAS  PubMed  Google Scholar 

Shi Y, Hellinga HW, Beese LS. Interplay of catalysis, fidelity, threading, and processivity in the exo- and endonucleolytic reactions of human exonuclease I. Proc Natl Acad Sci U S A. 2017;114(23):6010–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Yin K, Liu G, Li S, Li M, Qiu JL. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites. Sci China Life Sci. 2020;63(12):1918–27.

Article  CAS  PubMed  Google Scholar 

Han B, Zhang Y, Zhou Y, Zhang B, Krueger CJ, Bi X, Zhu Z, Tong X, Zhang B. ErCas12a and T5exo-ErCas12a mediate simple and efficient genome editing in zebrafish. Biology (Basel). 2022;11(3):411.

PubMed  PubMed Central  Google Scholar 

Wu Y, Yuan Q, Zhu Y, Gao X, Song J, Yin Z. Improving FnCas12a Genome editing by exonuclease fusion. CRISPR J. 2020;3(6):503–11.

Article  CAS  PubMed  Google Scholar 

Park J, Yoon J, Kwon D, Han MJ, Choi S, Park S, Lee J, Lee K, Lee J, Lee S, et al. Enhanced genome editing efficiency of CRISPR PLUS: Cas9 chimeric fusion proteins. Sci Rep. 2021;11(1):16199.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang K, Duan X, Cai P, Gao L, Wu X, Yao L, Zhou YJ. Fusing an exonuclease with Cas9 enhances homologous recombination in Pichia pastoris. Microb Cell Fact. 2022;21(1):182.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aida T, Nakade S, Sakuma T, Izu Y, Oishi A, Mochida K, Ishikubo H, Usami T, Aizawa H, Yamamoto T, et al. Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ. BMC Genomics. 2016;17(1):979.

Article  PubMed  PubMed Central  Google Scholar 

Hackley CR. A novel set of Cas9 fusion proteins to stimulate homologous recombination: Cas9-HRs. CRISPR J. 2021;4(2):253–63.

Article  CAS  PubMed  Google Scholar 

Lainscek D, Forstneric V, Mikolic V, Malensek S, Pecan P, Bencina M, Sever M, Podgornik H, Jerala R. Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing. Nat Commun. 2022;13(1):3604.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif