To slide or not to slide: key role of the hexasome in chromatin remodeling revealed

Menolfi, D. & Rhodes, D. 70 years of the DNA double helix: an interview with Daniela Rhodes. Mol. Cell 83, 1200–1203 (2023).

Article  CAS  PubMed  Google Scholar 

Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

Article  CAS  PubMed  Google Scholar 

Olins, A. L. & Olins, D. E. Spheroid chromatin units (v bodies). Science 183, 330–332 (1974).

Article  CAS  PubMed  Google Scholar 

Van Holde, K. E. Chromatin (Springer Science & Business Media, 2012).

Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. Structure of the nucleosome core particle at 7 Å resolution. Nature 311, 532–537 (1984).

Article  CAS  PubMed  Google Scholar 

Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

Article  CAS  PubMed  Google Scholar 

Baer, B. W. & Rhodes, D. Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes. Nature 301, 482–488 (1983).

Article  CAS  PubMed  Google Scholar 

Liu, Y. et al. FACT caught in the act of manipulating the nucleosome. Nature 577, 426–431 (2020).

Article  CAS  PubMed  Google Scholar 

Farnung, L., Ochmann, M., Garg, G., Vos, S. M. & Cramer, P. Structure of a backtracked hexasomal intermediate of nucleosome transcription. Mol. Cell 82, 3126–3134 (2022).

Article  CAS  PubMed  Google Scholar 

Kireeva, M. L. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).

Article  CAS  PubMed  Google Scholar 

Ramachandran, S., Ahmad, K. & Henikoff, S. Transcription and remodeling produce asymmetrically unwrapped nucleosomal intermediates. Mol. Cell 68, 1038–1053 (2017).

Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hargreaves, D. C. & Crabtree, G. R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, C. Chromatin remodeling and the control of gene expression. J. Biol. Chem. 272, 28171–28174 (1997).

Article  CAS  PubMed  Google Scholar 

Eustermann, S., Patel, A. B., Hopfner, K. P., He, Y. & Korber, P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat. Rev. Mol. Cell Biol. 25, 309–332 (2024).

Wu, H. et al. Reorientation of INO80 on hexasomes reveals basis for mechanistic versatility. Science 381, 319–324 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, M. et al. Hexasome–INO80 complex reveals structural basis of noncanonical nucleosome remodeling. Science 381, 313–319 (2023).

Article  CAS  PubMed  Google Scholar 

Hsieh, L. J. et al. A hexasome is the preferred substrate for the INO80 chromatin remodeling complex, allowing versatility of function. Mol. Cell 82, 2098–2112 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ebbert, R., Birkmann, A. & Schuller, H. J. The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol. Microbiol. 32, 741–751 (1999).

Article  CAS  PubMed  Google Scholar 

Shen, X., Mizuguchi, G., Hamiche, A. & Wu, C. A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541–544 (2000).

Article  CAS  PubMed  Google Scholar 

Krietenstein, N. et al. Genomic nucleosome organization reconstituted with pure proteins. Cell 167, 709–721 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poli, J., Gasser, S. M. & Papamichos-Chronakis, M. The INO80 remodeller in transcription, replication and repair. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160290 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Yen, K., Vinayachandran, V. & Pugh, B. F. SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Cell 154, 1246–1256 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oberbeckmann, E. et al. Ruler elements in chromatin remodelers set nucleosome array spacing and phasing. Nat. Commun. 12, 3232 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oberbeckmann, E. et al. Genome information processing by the INO80 chromatin remodeler positions nucleosomes. Nat. Commun. 12, 3231 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGinty, R. K. & Tan, S. Principles of nucleosome recognition by chromatin factors and enzymes. Curr. Opin. Struct. Biol. 71, 16–26 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eustermann, S. et al. Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Nature 556, 386–390 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayala, R. et al. Structure and regulation of the human INO80–nucleosome complex. Nature 556, 391–395 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woodcock, C. L., Skoultchi, A. I. & Fan, Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14, 17–25 (2006).

Article  CAS  PubMed  Google Scholar 

Udugama, M., Sabri, A. & Bartholomew, B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell. Biol. 31, 662–673 (2011).

Article  CAS  PubMed  Google Scholar 

Shimada, M. et al. Gene-specific H1 eviction through a transcriptional activator→p300→NAP1→H1 pathway. Mol. Cell 74, 268–283 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46–53 (2005).

Article  CAS  PubMed  Google Scholar 

Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W. & Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 319, 1097–1113 (2002).

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif