Anti-inflammatory peptide therapeutics and the role of sulphur containing amino acids (cysteine and methionine) in inflammation suppression: A review

Brusini R, Varna M, Couvreur P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv Drug Deliv Rev. 2020;157:161–78.

CAS  PubMed  PubMed Central  Google Scholar 

Serhan CN, Gupta SK, Perretti M, Godson C, Brennan E, Li Y, et al. The atlas of inflammation resolution (AIR). Mol Aspects Med. 2020;74:100894.

CAS  PubMed  PubMed Central  Google Scholar 

Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet. 2018;392:1736–88.

Google Scholar 

Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32.

CAS  PubMed  PubMed Central  Google Scholar 

Doomra R, Goyal A. NSAIDs and self-medication: a serious concern. J Family Med Prim Care. 2020;9:2183.

PubMed  PubMed Central  Google Scholar 

Liu P, Gao C, Chen H, Vong CT, Wu X, Tang X, et al. Receptor-mediated targeted drug delivery systems for treatment of inflammatory bowel disease: opportunities and emerging strategies. Acta Pharm Sin B. 2021;11:2798–818.

CAS  PubMed  Google Scholar 

Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020;180:114147.

CAS  PubMed  PubMed Central  Google Scholar 

Tsujimoto S, Mokuda S, Matoba K, Yamada A, Jouyama K, Murata Y, et al. The prevalence of endoscopic gastric mucosal damage in patients with rheumatoid arthritis. PLoS ONE. 2018;13:e0200023.

PubMed  PubMed Central  Google Scholar 

Braun J, Baraliakos X, Westhoff T. Nonsteroidal anti-inflammatory drugs and cardiovascular risk – a matter of indication. Semin Arthritis Rheum. 2020;50:285–8.

CAS  PubMed  Google Scholar 

Li P, Zheng Y, Chen X. Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics. Front Pharmacol. 2017;8.

Chanchlani N, Lin S, Bewshea C, Hamilton B, Thomas A, Smith R et al. Mechanisms and management of loss of response to anti-TNF therapy for patients with Crohn’s disease: 3-year data from the prospective, multicentre PANTS cohort study. Lancet Gastroenterol Hepatol. 2024.

Yao Y, Yang L, Zhang Z, Wang B, Feng B, Liu Z. Identification of targets for subsequent treatment of Crohn’s Disease patients after failure of anti-TNF therapy. J Inflamm Res. 2023;16:4617–31.

CAS  PubMed  PubMed Central  Google Scholar 

Ulug SK, Jahandideh F, Wu J. Novel technologies for the production of bioactive peptides. Trends Food Sci Technol. 2021;108:27–39.

CAS  Google Scholar 

Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive peptides: synthesis, sources, applications, and proposed mechanisms of action. Int J Mol Sci. 2022;23:1445.

CAS  PubMed  PubMed Central  Google Scholar 

Daliri E, Oh D, Lee B, Bioactive peptides. Foods., Jia L, Wang L, Liu C, Liang Y, Lin Q. Bioactive peptides from foods: production, function, and application. Food Funct. 2021;12:7108–25.

Jia L, Wang L, Liu C, Liang Y, Lin Q. Bioactive peptides from foods: production, function, and application. Food Funct. 2021;12:7108–25.

CAS  PubMed  Google Scholar 

Dadar M, Shahali Y, Chakraborty S, Prasad M, Tahoori F, Tiwari R, et al. Anti inflammatory peptides: current knowledge and promising prospects. Inflamm Res. 2019;68:125–45.

CAS  PubMed  Google Scholar 

Esfandi R, Walters ME, Tsopmo A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon. 2019;5:e01538.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Hu C-AA, Kovacs-Nolan J, Mine Y. Bioactive dietary peptides and amino acids in inflammatory bowel disease. Amino Acids. 2015;47:2127–41.

CAS  PubMed  Google Scholar 

Joshi I, Mohideen HS, Nazeer RA. A Meretrix meretrix visceral mass derived peptide inhibits lipopolysaccharide-stimulated responses in RAW264.7 cells and adult zebrafish model. Int Immunopharmacol. 2021;90:107140.

CAS  PubMed  Google Scholar 

Zhao L, Wang X, Zhang X-L, Xie Q-F. Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus). J Food Drug Anal. 2016;24:376–84.

CAS  PubMed  PubMed Central  Google Scholar 

Matsui R, Honda R, Kanome M, Hagiwara A, Matsuda Y, Togitani T, et al. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem. 2018;245:750–5.

CAS  PubMed  Google Scholar 

Hougland JL, Darling J, Flynn S. Protein posttranslational modification. Molecular basis of oxidative stress. Wiley; 2013. pp. 71–92.

Van Berkel PHC, Geerts EJM, Van Veen AH, Mericskay M, de Boer AH, Nuijens HJ. N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochem J. 1997;328:145–51.

PubMed  PubMed Central  Google Scholar 

Guha S, Majumder K. Structural-features of food-derived bioactive peptides with anti-inflammatory activity: a brief review. J Food Biochem. 2019;43:e12531.

PubMed  Google Scholar 

Oz HS, Chen TS, Nagasawa H. Comparative efficacies of 2 cysteine prodrugs and a glutathione delivery agent in a colitis model. Transl Res. 2007;150:122–9.

CAS  PubMed  PubMed Central  Google Scholar 

McPherson RA, Hardy G. Clinical and nutritional benefits of cysteine-enriched protein supplements. Curr Opin Clin Nutr Metab Care. 2011;14:562–8.

CAS  PubMed  Google Scholar 

Hasegawa S, Ichiyama T, Sonaka I, Ohsaki A, Okada S, Wakiguchi H, et al. Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clin Exp Immunol. 2012;167:269–74.

CAS  PubMed  PubMed Central  Google Scholar 

Ho SB, Dvorak LA, Moor RE, Jacobson AC, Frey MR, Corredor J, et al. Cysteine-rich domains of Muc3 intestinal mucin promote cell migration, inhibit apoptosis, and accelerate wound healing. Gastroenterology. 2006;131:1501–17.

CAS  PubMed  Google Scholar 

Jairath V, Feagan BG. Global burden of inflammatory bowel disease. Lancet Gastroenterol Hepatol. 2020;5:2–3.

PubMed  Google Scholar 

Farmer RG. Long-term prognosis for patients with ulcerative proctosigmoiditis (ulcerative colitis confined to the rectum and sigmoid colon). J Clin Gastroenterol. 1979;1:47–50.

CAS  PubMed  Google Scholar 

Dsouza R, Varghese G, Korula DR, Dutta AK. Crohn’s disease associated adenocarcinoma of ileocaecal region: a miscalculated approach. BMJ Case Rep. 2020;13:e234512.

PubMed  PubMed Central  Google Scholar 

Ryan FJ, Ahern AM, Fitzgerald RS, Laserna-Mendieta EJ, Power EM, Clooney AG et al. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat Commun. 2020;11.

Hadji H, Bouchemal K. Advances in the treatment of inflammatory bowel disease: focus on polysaccharide nanoparticulate drug delivery systems. Adv Drug Deliv Rev. 2022;181:114101.

CAS  PubMed  Google Scholar 

Mak WY, Zhao M, Ng SC, Burisch J. The epidemiology of inflammatory bowel disease: East meets west. J Gastroenterol Hepatol. 2020;35:380–9.

PubMed  Google Scholar 

Kim HJ, Hann HJ, Hong SN, Kim KH, Ahn IM, Song JY, et al. Incidence and natural course of inflammatory bowel disease in Korea, 2006–2012: a nationwide population-based study. Inflamm Bowel Dis. 2015;21:623–30.

PubMed  Google Scholar 

Burkhardt H, Koller T, Engström Å, Nandakumar KS, Turnay J, Kraetsch HG et al. Epitope-specific recognition of type II collagen by rheumatoid arthritis antibodies is shared with recognition by antibodies that are arthritogenic in collagen‐induced arthritis in the mouse. Arthritis Rheum.

Sparks JA. Rheumatoid arthritis. Ann Intern Med. 2019;170:ITC1.

PubMed  Google Scholar 

Poto R, Loffredo S, Palestra F, Marone G, Patella V, Varricchi G. Angiogenesis, lymphangiogenesis, and inflammation in chronic obstructive pulmonary disease (COPD): few certainties and many outstanding questions. Cells. 2022;11:1720.

CAS  PubMed  PubMed Central  Google Scholar 

Iheanacho I, Zhang S, King D, Rizzo M, Ismaila AS. Economic burden of chronic obstructive pulmonary disease (COPD): a systematic literature review. Int J Chron Obstruct Pulmon Dis. 2020;15:439–60.

PubMed  PubMed Central  Google Scholar 

Patel AR, Patel AR, Singh S, Singh S, Khawaja I. Global initiative for chronic obstructive lung disease: the changes made. Cureus. 2019.

Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules. 2020;25:5789.

CAS  PubMed  PubMed Central  Google Scholar 

Xie J, Van Hoecke L, Vandenbroucke RE. The impact of systemic inflammation on Alzheimer’s disease pathology. Front Immunol. 2022;12.

Zhang X-X, Tian Y, Wang Z-T, Ma Y-H, Tan L, Yu J-T. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J Prev Alzheimers Dis. 2021;1–9.

Liu M, Sun W, Wang J, He Y, Zhang J, Li F, et al. Bioactive secondary metabolites from the marine-associated fungus Aspergillus terreus. Bioorg Chem. 2018;80:525–30.

Li H, Huang H, Hou L, Ju J, Li W. Discovery of Antimycin-Type Depsipeptides from a wbl gene mutant strain of Deepsea-Derived Streptomyces somaliensis SCSIO ZH66 and their effects on pro-inflammatory cytokine production. Front Microbiol. 2017;8.

Liu J, Gu B, Yang L, Yang F, Lin H. New anti-inflammatory cyclopeptides from a sponge-derived fungus Aspergillus violaceofuscus. Front Chem. 2018;6.

Lee H-A, Kim I-H, Nam T-J. Bioactive peptide from Pyropia yezoensis and its anti-inflammatory activities. Int J Mol Med. 2015;36:1701–6.

Abreu T, Ribeiro N, Chaves H, Jorge R, Bezerra M, Monteiro H, et al. Antinociceptive and anti-inflammatory activities of the lectin from marine red alga Solieria filiformis. Planta Med. 2016;82:596–605.

de Queiroz INL, Quinderé ALG, Rodrigues JAG, de Sousa Oliveira Vanderlei E, Ribeiro NA, da Conceição Rivanor RL, et al. Dual effects of a lectin from the green seaweed Caulerpa cupressoides var. lycopodium on inflammatory mediators in classical models of inflammation. Inflamm Res. 2015;64:971–82.

PubMed  Google Scholar 

Li M, Lv R, Wang C, Ge Q, Du H, Lin S. Tricholoma matsutake-derived peptide WFNNAGP protects against DSS-induced colitis by ameliorating oxidative stress and intestinal barrier dysfunction. Food Funct. 2021;12:11883–97.

CAS  PubMed  Google Scholar 

Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev. 2012;92:689–737.

CAS  PubMed  Google Scholar 

Gao Y, Zhang X, Ren G, Wu C, Qin P, Yao Y. Peptides from extruded lupin (Lupinus albus L.) regulate inflammatory activity via the p38 MAPK signal transduction pathway in RAW 264.7 cells. J Agric Food Chem. 2020;68:11702–9.

CAS  PubMed  Google Scholar 

Feng M, Wang X, Xiong H, Qiu T, Zhang H, Guo F, et al. Anti-inflammatory effects of three selenium-enriched brown rice protein hydrolysates in LPS-induced RAW264.7 macrophages via NF-κB/MAPKs signaling pathways. J Funct Foods. 2021;76:104320.

CAS 

留言 (0)

沒有登入
gif