Visualizing histone H4K20me1 in knock-in mice expressing the mCherry-tagged modification-specific intracellular antibody

Calabrese JM, Sun W, Song L, Mugford JW, Williams L, Yee D, Starmer J, Mieczkowski P, Crawford GE, Magnuson T (2012) Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151(5):951–963. https://doi.org/10.1016/j.cell.2012.10.037

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chuma S, Nakatsuji N (2001) Autonomous transition into meiosis of mouse fetal germ cells in vitro and its inhibition by gp130-mediated signaling. Dev Biol 229(2):468–479. https://doi.org/10.1006/dbio.2000.9989

Article  CAS  PubMed  Google Scholar 

Corvalan AZ, Coller HA (2021) Methylation of histone 4’s lysine 20: a critical analysis of the state of the field. Physiol Genomics 53(1):22–32. https://doi.org/10.1152/physiolgenomics.00128.2020

Article  CAS  PubMed  Google Scholar 

Dulev S, Tkach J, Lin S, Batada NN (2014) SET8 methyltransferase activity during the DNA double-strand break response is required for recruitment of 53BP1. EMBO Rep 15(11):1163–1174. https://doi.org/10.15252/embr.201439434

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eberhart A, Kimura H, Leonhardt H, Joffe B, Solovei I (2012) Reliable detection of epigenetic histone marks and nuclear proteins in tissue cryosections. Chromosome Res 20(7):849–858. https://doi.org/10.1007/s10577-012-9318-8

Article  CAS  PubMed  Google Scholar 

Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4(4):497–508. https://doi.org/10.1016/s1534-5807(03)00093-5

Article  CAS  PubMed  Google Scholar 

Goto N, Suke K, Yonezawa N, Nishihara H, Sato Y, Kujirai T, Kurumizaka H, Yamagata K, Kimura H (2024) ISWI chromatin remodeling complexes recruit NSD2 and H3K36me2 in pericentromeric heterochromatin. J Cell Biol 223(8):e202310084. https://doi.org/10.1083/jcb.202310084

Article  PubMed  Google Scholar 

Hayashi-Takanaka Y, Yamagata K, Wakayama T, Stasevich TJ, Kainuma T, Tsurimoto T, Tachibana M, Shinkai Y, Kurumizaka H, Nozaki N, Kimura H (2011) Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res 39(15):6475–6488. https://doi.org/10.1093/nar/gkr343

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayashi-Takanaka Y, Maehara K, Harada A, Umehara T, Yokoyama S, Obuse C, Ohkawa Y, Nozaki N, Kimura H (2015) Distribution of histone H4 modifications as revealed by a panel of specific monoclonal antibodies. Chromosome Res 23(4):753–766. https://doi.org/10.1007/s10577-015-9486-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayashi-Takanaka Y, Kina Y, Nakamura F, Becking LE, Nakao Y, Nagase T, Nozaki N, Kimura H (2020) Histone modification dynamics as revealed by multicolor immunofluorescence-based single-cell analysis. J Cell Sci 133(14):jcs243444. https://doi.org/10.1242/jcs.243444

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sèle B, Khochbin S, Rousseaux S (2000) Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol 79(12):950–60. https://doi.org/10.1078/0171-9335-00123

Article  CAS  PubMed  Google Scholar 

Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106(6):348–360. https://doi.org/10.1007/s004120050256

Article  CAS  PubMed  Google Scholar 

Hori T, Shang WH, Toyoda A, Misu S, Monma N, Ikeo K, Molina O, Vargiu G, Fujiyama A, Kimura H, Earnshaw WC, Fukagawa T (2014) Histone H4 Lys 20 monomethylation of the CENP-A nucleosome is essential for kinetochore assembly. Dev Cell 29(6):740–749. https://doi.org/10.1016/j.devcel.2014.05.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johansen KM, Johansen J (2006) Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Res 14(4):393–404. https://doi.org/10.1007/s10577-006-1063-4

Article  CAS  PubMed  Google Scholar 

Jørgensen S, Schotta G, Sørensen CS (2013) Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res 41(5):2797–2806. https://doi.org/10.1093/nar/gkt012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katan-Khaykovich Y, Struhl K (2002) Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and repressors. Genes Dev 16(6):743–752. https://doi.org/10.1101/gad.967302

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimura H, Hayashi-Takanaka Y, Stasevich TJ, Sato Y (2015) Visualizing posttranslational and epigenetic modifications of endogenous proteins in vivo. Histochem Cell Biol 144(2):101–109. https://doi.org/10.1007/s00418-015-1344-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kohlmaier A, Savarese F, Lachner M, Martens J, Jenuwein T, Wutz A (2004) A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2(7):E171. https://doi.org/10.1371/journal.pbio.0020171

Article  PubMed  PubMed Central  Google Scholar 

Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11(4):285–296. https://doi.org/10.1038/nrg2752

Article  CAS  PubMed  PubMed Central  Google Scholar 

Millán-Zambrano G, Burton A, Bannister AJ, Schneider R (2022) Histone post-translational modifications—cause and consequence of genome function. Nat Rev Genet 23(9):563–580. https://doi.org/10.1038/s41576-022-00468-7

Article  CAS  PubMed  Google Scholar 

Nakata H, Wakayama T, Takai Y, Iseki S (2015) Quantitative analysis of the cellular composition in seminiferous tubules in normal and genetically modified infertile mice. J Histochem Cytochem 63(2):99–113. https://doi.org/10.1369/0022155414562045

Article  CAS  PubMed  Google Scholar 

Oda H, Okamoto I, Murphy N, Chu J, Price SM, Shen MM, Torres-Padilla ME, Heard E, Reinberg D (2009) Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol 29(8):2278–2295. https://doi.org/10.1128/MCB.01768-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pesavento JJ, Yang H, Kelleher NL, Mizzen CA (2008) Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol Cell Biol 28(1):468–486. https://doi.org/10.1128/MCB.01517-07

Article  CAS  PubMed  Google Scholar 

Rice JC, Nishioka K, Sarma K, Steward R, Reinberg D, Allis CD (2002) Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev 16(17):2225–2230. https://doi.org/10.1101/gad.1014902

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sato Y, Mukai M, Ueda J, Muraki M, Stasevich TJ, Horikoshi N, Kujirai T, Kita H, Kimura T, Hira S, Okada Y, Hayashi-Takanaka Y, Obuse C, Kurumizaka H, Kawahara A, Yamagata K, Nozaki N, Kimura H (2013) Genetically encoded system to track histone modification in vivo. Sci Rep 3:2436. https://doi.org/10.1038/srep02436

Article  PubMed  PubMed Central  Google Scholar 

Sato Y, Kujirai T, Arai R, Asakawa H, Ohtsuki C, Horikoshi N, Yamagata K, Ueda J, Nagase T, Haraguchi T, Hiraoka Y, Kimura A, Kurumizaka H, Kimura H (2016) A genetically encoded probe for live-cell imaging of H4K20 monomethylation. J Mol Biol 428(20):3885–3902. https://doi.org/10.1016/j.jmb.2016.08.010

Article  CAS  PubMed  Google Scholar 

Sato Y, Nakao M, Kimura H (2021) Live-cell imaging probes to track chromatin modification dynamics. Microscopy 70(5):415–422. https://doi.org/10.1093/jmicro/dfab030

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47(6):719–730. https://doi.org/10.1177/002215549904700601

Article  CAS  PubMed  Google Scholar 

Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callén E, Celeste A, Pagani M, Opravil S, De La Rosa-Velazquez IA, Espejo A, Bedford MT, Nussenzweig A, Busslinger M, Jenuwein T (2008) A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev 22(15):2048–2061. https://doi.org/10.1101/gad.476008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shirakata Y, Hiradate Y, Inoue H, Sato E, Tanemura K (2014) Histone h4 modification during mouse spermatogenesis. J Reprod Dev 60(5):383–387. https://doi.org/10.1262/jrd.2014-018

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif