Mitochondria targeted esculetin administration improves insulin resistance and hyperglycemia-induced atherosclerosis in db/db mice

Di Pietrantonio N, Di Tomo P, Mandatori D, Formoso G, Pandolfi A (2023) Diabetes and its cardiovascular complications: potential role of the acetyltransferase p300. Cells 12(3):1–16

Article  Google Scholar 

Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23(2):168–175

Article  CAS  PubMed  Google Scholar 

Badimon L, Vilahur G (2014) Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med 276(6):618–632

Article  CAS  PubMed  Google Scholar 

Beverly JK, Budoff MJ (2020) Atherosclerosis: pathophysiology of insulin resistance, hyperglycemia, hyperlipidemia, and inflammation. J Diabetes 12(2):102–104

Article  PubMed  Google Scholar 

Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98(4):2133–2223

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H (2022) Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 7(1):1–25

PubMed  PubMed Central  Google Scholar 

Popov D (2010) Endothelial cell dysfunction in hyperglycemia: phenotypic change, intracellular signaling modification, ultrastructural alteration, and potential clinical outcomes. Int J Diabetes Mellit [Internet] 2(3):189–95. https://doi.org/10.1016/j.ijdm.2010.09.002

Article  CAS  Google Scholar 

Kaur R, Kaur M, Singh J (2018) Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol [Internet] 17(1):1–17. https://doi.org/10.1186/s12933-018-0763-3

Article  CAS  Google Scholar 

Vicent D, Ilany J, Kondo T, Naruse K, Fisher SJ, Kisanuki YY et al (2003) The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest 111(9):1373–1380

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamed S, Brenner B, Roguin A (2011) Nitric oxide: a key factor behind the dysfunctionality of endothelial progenitor cells in diabetes mellitus type-2. Cardiovasc Res 91(1):9–15

Article  CAS  PubMed  Google Scholar 

Wan Y, Liu Z, Wu A, Khan AH, Zhu Y, Ding S et al (2022) Hyperglycemia promotes endothelial cell senescence through AQR/PLAU signaling axis. Int J Mol Sci 23(5):5–9

Article  Google Scholar 

Sun HJ, Wu ZY, Nie XW, Bian JS (2020) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10(January):1–15

CAS  Google Scholar 

Ye X, Li M, Hou T, Gao T, Zhu WG, Yang Y (2017) Sirtuins in glucose and lipid metabolism. Oncotarget 8(1):1845–1859

Article  PubMed  Google Scholar 

Winnik S, Auwerx J, Sinclair DA, Matter CM (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 36(48):3404–3412

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sivanand (2019) Sirtuins, cell senescence, and vascular aging HHS Public Access. Physiol Behav 176(3):139–148

Google Scholar 

Yan P, Li Z, Xiong J, Geng Z, Wei W, Zhang Y et al (2021) LARP7 ameliorates cellular senescence and aging by allosterically enhancing SIRT1 deacetylase activity. Cell Rep 37(8):110038

Article  CAS  PubMed  Google Scholar 

Budbazar E, Rodriguez F, Sanchez JM, Seta F (2020) The role of sirtuin-1 in the vasculature: focus on aortic aneurysm. Front Physiol 11(August):1–10

Google Scholar 

Winnik S, Stein S, M Matter C (2012) SIRT1 – an anti-inflammatory pathway at the crossroads between metabolic disease and atherosclerosis. Curr Vasc Pharmacol 10(6):693–696

Article  CAS  PubMed  Google Scholar 

Zhu Z, Li J, Zhang X (2019) Salidroside protects against ox-LDL-induced endothelial injury by enhancing autophagy mediated by SIRT1-FoxO1 pathway. BMC Complement Altern Med 19(1):1–10

Article  Google Scholar 

Zhou C, Tan Y, Xu B, Wang Y, Cheang WS (2022) 3,4′,5-Trimethoxy-trans-stilbene alleviates endothelial dysfunction in diabetic and obese mice via activation of the AMPK/SIRT1/eNOS pathway. Antioxidants 11(7):1–15

Article  Google Scholar 

Nishikawa T, Kukidome D, Sonoda K, Fujisawa K, Matsuhisa T, Motoshima H et al (2007) Impact of mitochondrial ROS production in the pathogenesis of insulin resistance. Diabetes Res Clin Pract 77(3 SUPPL.):161–164

Article  Google Scholar 

Nishikawa T, Edelstein D, Du XL, Yamagishi SI, Matsumura T, Kaneda Y et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790

Article  CAS  PubMed  Google Scholar 

Oyewole AO, Birch-Machin MA (2015) Mitochondria-targeted antioxidants. FASEB J 29(12):4766–4771

Article  CAS  PubMed  Google Scholar 

Shaikh A, Neeli PK, Singuru G, Panangipalli S, Banerjee R, Maddi SR et al (2021) A functional and self-assembling octyl-phosphonium-tagged esculetin as an effective siRNA delivery agent. Chem Commun 57(92):12329–12332

Article  CAS  Google Scholar 

Karnewar S, Vasamsetti SB, Gopoju R, Kanugula AK, Ganji SK, Prabhakar S et al (2016) Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis. Sci Rep [Internet] 6(December 2015):1–18. https://doi.org/10.1038/srep24108

Article  CAS  Google Scholar 

Katta S, Karnewar S, Panuganti D, Jerald MK, Sastry BKS, Kotamraju S (2018) Mitochondria-targeted esculetin inhibits PAI-1 levels by modulating STAT3 activation and miR-19b via SIRT3: role in acute coronary artery syndrome. J Cell Physiol 233(1):214–225

Article  CAS  PubMed  Google Scholar 

Karnewar S, Pulipaka S, Katta S, Panuganti D, Neeli PK, Thennati R, Jerald MK, Kotamraju S (2022) Mitochondria-targeted esculetin mitigates atherosclerosis in the setting of aging via the modulation of SIRT1-mediated vascular cell senescence and mitochondrial function in Apoe−/− mice. Atherosclerosis 356:28–40

Article  CAS  PubMed  Google Scholar 

Karnewar S, Neeli PK, Panuganti D, Kotagiri S, Mallappa S, Jain N et al (2018) Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. Biochim Biophys Acta Mol Basis Dis [Internet] 1864(4):1115–1128. https://doi.org/10.1016/j.bbadis.2018.01.018

Article  CAS  PubMed  Google Scholar 

Cantó C, Auwerx J (2009) PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20(2):98–105

Article  PubMed  PubMed Central  Google Scholar 

Hegarty BD, Turner N, Cooney GJ, Kraegen EW (2009) Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase. Acta Physiol 196(1):129–145

Article  CAS  Google Scholar 

Ono-Moore KD, Blackburn ML, Adams SH (2018) Is palmitate truly proinflammatory? Experimental confounders and context-specificity. Am J Physiol Endocrinol Metab 315(5):E780–E794

Article  CAS  PubMed  Google Scholar 

Kinsella GK, Cannito S, Bordano V, Stephens JC, Rosa AC, Miglio G et al (2021) GPR21 inhibition increases glucose-uptake in HepG2 cells. Int J Mol Sci 22(19):1–14

Article  Google Scholar 

Coelho RP, Feksa DL, Oliveira PM, da Costa Güllich AA, Pilar BC, da Costa Escobar Piccoli J et al (2018) Protective effect of the hydroalcoholic extract of Tripodanthus acutifolius in hypercholesterolemic Wistar rats. Biomed Pharmacother [Internet] 97(July 2017):300–309. https://doi.org/10.1016/j.biopha.2017.10.003

Article  CAS  PubMed  Google Scholar 

Kubota N, Terauchi Y, Kubota T, Kumagai H, Itoh S, Satoh H et al (2006) Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways. J Biol Chem [Internet] 281(13):8748–8755. https://doi.org/10.1074/jbc.M505649200

Article  CAS  PubMed  Google Scholar 

Iwanishi M, Kobayashi M (1993) Effect of pioglitazone on insulin receptors of skeletal muscles from high-fat-fed rats. Metabolism 42(8):1017–1021

Article  CAS  PubMed  Google Scholar 

Muscarà C, Molonia MS, Speciale A, Bashllari R, Cimino F, Occhiuto C et al (2019) Anthocyanins ameliorate palmitate-induced inflammation and insulin resistance in 3T3-L1 adipocytes. Phyther Res 33(7):1888–1897

Article  Google Scholar 

Malik SA, Acharya JD, Mehendale NK, Kamat SS, Ghaskadbi SS (2019) Pterostilbene reverses palmitic acid mediated insulin resistance in HepG2 cells by reducing oxidative stress and triglyceride accumulation. Free Radic Res 53(7):815–827

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhupathiraju SN, Hu FB (2016) Epidemiología de la Obesidad y la Diabetes y sus Complicaciones Cardiovasculares. Circ Res [Internet] 118(11):1723–1735. http://www.ncbi.nlm.nih.gov/pubmed/27230638

Reusch JEB, Draznin BB (2007) Atherosclerosis in diabetes and insulin resistance. Diabetes Obes Metab 9(4):455–463

Article  CAS  PubMed  Google Scholar 

Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN (2020) The diabetes mellitus–atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci 21(5):1–13

Article 

留言 (0)

沒有登入
gif