Circular RNAs: a small piece in the heart failure puzzle

Abbate A et al (2006) Myocardial expression of survivin, an apoptosis inhibitor, in aging and heart failure. An experimental study in the spontaneously hypertensive rat. Int J Cardiol 111(3):371–376

Article  PubMed  Google Scholar 

Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8(1):61–70

Article  CAS  PubMed  Google Scholar 

Altieri DC (2010) Survivin and IAP proteins in cell-death mechanisms. Biochem J 430(2):199–205

Article  CAS  PubMed  Google Scholar 

Aranda-Orgilles B et al (2016) MED12 regulates HSC-specific enhancers independently of mediator kinase activity to control hematopoiesis. Cell Stem Cell 19(6):784–799

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashton NW et al (2013) Human single-stranded DNA binding proteins are essential for maintaining genomic stability. BMC Mol Biol 14(1):1–20

Article  Google Scholar 

Ashwal-Fluss R et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

Article  CAS  PubMed  Google Scholar 

Bansal N et al (2019) Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardio-Oncology 5:1–22

Article  Google Scholar 

Baskin KK et al (2017) MED12 regulates a transcriptional network of calcium-handling genes in the heart. JCI Insight 2(14)

Bayoumi AS et al (2017) MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res 113(13):1603–1614

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bejarano L, Jordāo MJ, Joyce JA (2021) Therapeutic targeting of the tumor microenvironment. Cancer Discov 11(4):933–959

Article  CAS  PubMed  Google Scholar 

Benjamin EJ et al (2017) Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603

Article  PubMed  PubMed Central  Google Scholar 

Bernardo BC et al (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227

Article  CAS  PubMed  Google Scholar 

Bhambhani V et al (2018) Predictors and outcomes of heart failure with mid-range ejection fraction. Eur J Heart Fail 20(4):651–659

Article  CAS  PubMed  Google Scholar 

Boosani CS, Dhar K, Agrawal DK (2015) Down-regulation of hsa-miR-1264 contributes to DNMT1-mediated silencing of SOCS3. Mol Biol Rep 42(9):1365–1376

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brauch KM et al (2009) Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol 54(10):930–941

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brough D, Rothwell NJ (2007) Caspase-1-dependent processing of pro-interleukin-1β is cytosolic and precedes cell death. J Cell Sci 120(5):772–781

Article  CAS  PubMed  Google Scholar 

Burridge PW et al (2016) Human induced pluripotent stem cell–derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22(5):547–556

Article  CAS  PubMed  PubMed Central  Google Scholar 

Busa VF, Leung AK (2021) Thrown for a (stem) loop: How RNA structure impacts circular RNA regulation and function. Methods 196:56–67

Article  CAS  PubMed  Google Scholar 

Cardiovascular Disease and Risk Management (2021) Standards of Medical Care in Diabetes-2021. Diab Care 44(Suppl 1): S125-s150

Chandrasekera DN et al (2020) Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart. Apoptosis 25:388–399

Article  CAS  PubMed  Google Scholar 

Chen C et al (2020b) The Circular RNA CDR1as Regulates the Proliferation and Apoptosis of Human Cardiomyocytes Through the miR-135a/HMOX1 and miR-135b/HMOX1 Axes. Genet Test Mol Biomarkers 24(9):537–548

Article  CAS  PubMed  Google Scholar 

Chen C-K et al (2021) Structured elements drive extensive circular RNA translation. Mol Cell 81(20):4300–4318

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen D et al (2022a) HMGCS2 silencing attenuates high glucose-induced in vitro diabetic cardiomyopathy by increasing cell viability, and inhibiting apoptosis, inflammation, and oxidative stress. Bioengineered 13(5):11417–11429

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y et al (2020a) Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol 11:42

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y et al (2022b) Identification of circular RNAs in cardiac hypertrophy and cardiac fibrosis. Front Pharmacol 13:940768

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z et al (2018) MiR-33 promotes myocardial fibrosis by inhibiting MMP16 and stimulating p38 MAPK signaling. Oncotarget 9(31):22047

Article  PubMed  PubMed Central  Google Scholar 

Cheng S et al (2010) Correlates of echocardiographic indices of cardiac remodeling over the adult life course: longitudinal observations from the Framingham Heart Study. Circulation 122(6):570–578

Article  PubMed  PubMed Central  Google Scholar 

Cheng Y et al (2023) Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 14:1162754

Article  PubMed  Google Scholar 

Crone SA et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8(5):459–465

Article  CAS  PubMed  Google Scholar 

Cui M et al (2022) A narrative review of the research status of exosomes in cardiovascular disease. Ann Palliat Med 11(1):363–377

Article  PubMed  Google Scholar 

Dai D-F et al (2011) Mitochondrial oxidative stress mediates angiotensin II–induced cardiac hypertrophy and Gαq overexpression–induced heart failure. Circ Res 108(7):837–846

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dannenberg L et al (2021) Cellular mechanisms and recommended drug-based therapeutic options in diabetic cardiomyopathy. Pharmacol Ther 228:107920

Article  CAS  PubMed  Google Scholar 

Del Re DP et al (2014) Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL. Mol Cell 54(4):639–650

Article  PubMed  PubMed Central  Google Scholar 

Deng Y et al (2019) Circ-HIPK3 Strengthens the Effects of Adrenaline in Heart Failure by MiR-17-3p - ADCY6 Axis. Int J Biol Sci 15(11):2484–2496

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dohi T et al (2004) An IAP-IAP complex inhibits apoptosis. J Biol Chem 279(33):34087–34090

Article  CAS  PubMed  Google Scholar 

Dou YQ et al (2020) Smooth muscle SIRT1 reprograms endothelial cells to suppress angiogenesis after ischemia. Theranostics 10(3):1197–1212

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du WW et al (2021) A neuroligin isoform translated by circNlgn contributes to cardiac remodeling. Circ Res 129(5):568–582

Article  CAS  PubMed  Google Scholar 

Dunlay SM et al (2012) Longitudinal changes in ejection fraction in heart failure patients with preserved and reduced ejection fraction. Circ Heart Fail 5(6):720–726

Article  PubMed  PubMed Central  Google Scholar 

Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25(4):543–567

Article  CAS  PubMed  Google Scholar 

Feng, W. and S. Han, lncRNA ADAMTS9-AS1/circFN1 Competitively Binds to miR-206 to Elevate the Expression of ACTB, Thus Inducing Hypertrophic Cardiomyopathy. Oxidative Medicine and Cellular Longevity. 2022.

Feng Y et al (2021) Knockdown circ_0040414 inhibits inflammation, apoptosis and promotes the proliferation of cardiomyocytes via miR-186-5p/PTEN/AKT axis in chronic heart failure. Cell Biol Int 45(11):2304–2315

Article 

留言 (0)

沒有登入
gif