Insights into Craniofacial Development and Anomalies: Exploring Fgf Signaling in Zebrafish Models

Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4:215–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, et al. FGF/FGFR signaling in health and disease. Sig Transduct Target Ther. 2020;5:181.

Article  CAS  Google Scholar 

Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mechanisms of Disease. 2022;14: e1549.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dambroise E, Ktorza I, Brombin A, Abdessalem G, Edouard J, Luka M, et al. Fgfr3 is a positive regulator of osteoblast expansion and differentiation during zebrafish skull vault development. J Bone Miner Res. 2020. Role of Fgfr3 during cranial vault development

Maves L, Jackman W, Kimmel CB. FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development. 2002;129:3825–37.

Article  CAS  PubMed  Google Scholar 

Liu K, Lv Z, Huang H, Yu S, Xiao L, Li X, et al. FGF3 from the Hypothalamus Regulates the Guidance of Thalamocortical Axons. Dev Neurosci. 2020;42:208–16.

Article  PubMed  Google Scholar 

Grillo L, Greco D, Pettinato R, Avola E, Potenza N, Castiglia L, et al. Increased FGF3 and FGF4 gene dosage is a risk factor for craniosynostosis. Gene. 2014;534:435–9.

Article  CAS  PubMed  Google Scholar 

Zhang Y-B, Hu J, Zhang J, Zhou X, Li X, Gu C, et al. Genome-wide association study identifies multiple susceptibility loci for craniofacial microsomia. Nat Commun. 2016;7:10605.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jackman WR, Draper BW, Stock DW. Fgf signaling is required for zebrafish tooth development. Dev Biol. 2004;274:139–57.

Article  CAS  PubMed  Google Scholar 

Choe CP, Crump JG. Tbx1 controls the morphogenesis of pharyngeal pouch epithelia through mesodermal Wnt11r and Fgf8a. Development. 2014;141:3583–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kesavan G, Raible F, Gupta M, Machate A, Yilmaz D, Brand M. Isthmin1, a secreted signaling protein, acts downstream of diverse embryonic patterning centers in development. Cell Tissue Res. 2021;383:987–1002.

Article  CAS  PubMed  Google Scholar 

Walshe J, Mason I. Unique and combinatorial functions of Fgf3 and Fgf8 during zebrafish forebrain development. Development. 2003;130:4337–49.

Article  CAS  PubMed  Google Scholar 

Albertson RC, Yelick PC. Fgf8 haploinsufficiency results in distinct craniofacial defects in adult zebrafish. Dev Biol. 2007;306:505–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gebuijs IGE, Raterman ST, Metz JR, Swanenberg L, Zethof J, Van Den Bos R, et al. Fgf8a mutation affects craniofacial development and skeletal gene expression in zebrafish larvae. Biology Open. 2019;bio.039834. https://doi.org/10.1242/bio.039834.

Xu H, Niu Y, Wang T, Liu S, Xu H, Wang S, et al. Novel FGFR1 and KISS1R Mutations in Chinese Kallmann Syndrome Males with Cleft Lip/Palate. Biomed Res Int. 2015;2015:1–9.

CAS  Google Scholar 

Rodriguez-Zabala M, Aza-Carmona M, Rivera-Pedroza CI, Belinchón A, Guerrero-Zapata I, Barraza-García J, et al. FGF9 mutation causes craniosynostosis along with multiple synostoses. Hum Mutat. 2017;38:1471–6.

Article  CAS  PubMed  Google Scholar 

He X, Yan Y-L, Eberhart JK, Herpin A, Wagner TU, Schartl M, et al. miR-196 regulates axial patterning and pectoral appendage initiation. Dev Biol. 2011;357:463–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swartz ME, Sheehan-Rooney K, Dixon MJ, Eberhart JK. Examination of a palatogenic gene program in zebrafish. Dev Dyn. 2011;240:2204–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jovelin R, Yan Y-L, He X, Catchen J, Amores A, Canestro C, et al. Evolution of developmental regulation in the vertebrate FgfD subfamily. J Exp Zool B Mol Dev Evol. 2010;314:33–56.

Article  PubMed  PubMed Central  Google Scholar 

FGF17 - an overview | ScienceDirect Topics [Internet]. [cited 2024 Feb 15]. Available from: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fgf17.

Nomura R, Kamei E, Hotta Y, Konishi M, Miyake A, Itoh N. Fgf16 is essential for pectoral fin bud formation in zebrafish. Biochem Biophys Res Commun. 2006;347:340–6.

Article  CAS  PubMed  Google Scholar 

ZFIN Publication: Thisse et al., 2005 [Internet]. [cited 2024 Feb 15]. Available from: https://zfin.org/ZDB-PUB-051025-1.

Cooper WJ, Wirgau RM, Sweet EM, Albertson RC. Deficiency of zebrafish fgf20a results in aberrant skull remodeling that mimics both human cranial disease and evolutionarily important fish skull morphologies. Evol Dev. 2013;15:426–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitchell JM, Sucharov J, Pulvino AT, Brooks EP, Gillen AE, Nichols JT. The alx3 gene shapes the zebrafish neurocranium by regulating frontonasal neural crest cell differentiation timing. Development. 2021;148:dev197483.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamauchi H, Goto M, Katayama M, Miyake A, Itoh N. Fgf20b is required for the ectomesenchymal fate establishment of cranial neural crest cells in zebrafish. Biochem Biophys Res Commun. 2011;409:705–10.

Article  CAS  PubMed  Google Scholar 

Sugimoto K, Hui SP, Sheng DZ, Kikuchi K. Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch. Elife. 2017;6: e24635.

Article  PubMed  PubMed Central  Google Scholar 

Rothenbuhler A, Fadel N, Debza Y, Bacchetta J, Diallo MT, Adamsbaum C, et al. High Incidence of Cranial Synostosis and Chiari I Malformation in Children With X-Linked Hypophosphatemic Rickets (XLHR). J Bone Miner Res. 2018

Larbuisson A, Dalcq J, Martial JA, Muller M. Fgf receptors Fgfr1a and Fgfr2 control the function of pharyngeal endoderm in late cranial cartilage development. Differentiation. 2013;86:192–206.

Article  CAS  PubMed  Google Scholar 

Koch P, Löhr HB, Driever W. A mutation in cnot8, component of the Ccr4-not complex regulating transcript stability, affects expression levels of developmental regulators and reveals a role of Fgf3 in development of caudal hypothalamic dopaminergic neurons. PLoS ONE. 2014;9: e113829.

Article  PubMed  PubMed Central  Google Scholar 

Rohs P, Ebert AM, Zuba A, McFarlane S. Neuronal expression of fibroblast growth factor receptors in zebrafish. Gene Expr Patterns. 2013;13:354–61.

Article  CAS  PubMed  Google Scholar 

Topczewska JM, Shoela RA, Tomaszewski JP, Mirmira RB, Gosain AK. The Morphogenesis of Cranial Sutures in Zebrafish. PLoS ONE. 2016;11: e0165775.

Article  PubMed  PubMed Central  Google Scholar 

Schell U, Hehr A, Feldman GJ, Robin NH, Zackai EH, de Die-Smulders C, et al. Mutations in FGFR1 and FGFR2 cause familial and sporadic Pfeiffer syndrome. Hum Mol Genet. 1995;4:323–8.

Article  CAS  PubMed  Google Scholar 

Farrow EG, Davis SI, Mooney SD, Beighton P, Mascarenhas L, Gutierrez YR, et al. Extended mutational analyses of FGFR1 in osteoglophonic dysplasia. Am J Med Genet A. 2006;140:537–9.

Article  PubMed  Google Scholar 

Duszynski RJ, Topczewski J, LeClair EE. Divergent requirements for fibroblast growth factor signaling in zebrafish maxillary barbel and caudal fin regeneration. Dev Growth Differ. 2013;55:282–300.

Article  CAS  PubMed  PubMed Central  Google Scholar 

ZFIN Publication: Thisse et al., 2008 [Internet]. [cited 2024 Feb 15]. Available from: https://zfin.org/ZDB-PUB-080227-22.

Paudel S, Gjorcheska S, Bump P, Barske L. Patterning of cartilaginous condensations in the developing facial skeleton. Developmental Biology. 2022;486:44–55. https://doi.org/10.1016/j.ydbio.2022.03.010. Involvement of FGF signaling in PCC formation.

Wilkie AO, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9:165–72.

Article  CAS  PubMed  Google Scholar 

Reardon W, Winter RM, Rutland P, Pulleyn LJ, Jones BM, Malcolm S. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat Genet. 1994;8:98–103.

Article  CAS  PubMed  Google Scholar 

Ibrahimi OA, Zhang F, Eliseenkova AV, Linhardt RJ, Mohammadi M. Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity. Hum Mol Genet. 2004;13:69–78.

Article  CAS  PubMed  Google Scholar 

Fonseca R, Costa-Lima MA, Cosentino V, Orioli IM. Second case of Beare-Stevenson syndrome with an FGFR2 Ser372Cys mutation. Am J Med Genet A. 2008;146A:658–60.

Article  CAS  PubMed  Google Scholar 

Przylepa KA, Paznekas W, Zhang M, Golabi M, Bias W, Bamshad MJ, et al. Fibroblast growth factor receptor 2 mutations in Beare-Stevenson cutis gyrata syndrome. Nat Genet. 1996;13:492–4.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif