Siddiqui JA, Partridge NC. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiol (Bethesda). 2016;31(3):233–45. https://doi.org/10.1152/physiol.00061.2014.
Yang N, Liu Y. The Role of the Immune Microenvironment in Bone Regeneration. Int J Med Sci. 2021;18(16):3697–707. https://doi.org/10.7150/ijms.61080.
Article PubMed PubMed Central Google Scholar
Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29(4):403–40. https://doi.org/10.1210/er.2007-0038.
Article PubMed PubMed Central Google Scholar
Arron JR, Choi Y. Bone versus immune system. Nature. 2000;408(6812):535–6. https://doi.org/10.1038/35046196.
Weitzmann MN. Bone and the Immune System. Toxicol Pathol. 2017;45(7):911–24. https://doi.org/10.1177/0192623317735316.
Article PubMed PubMed Central Google Scholar
Charles JF, Nakamura MC. Bone and the innate immune system. Curr Osteoporos Rep. 2014;12(1):1–8. https://doi.org/10.1007/s11914-014-0195-2.
Article PubMed PubMed Central Google Scholar
Hardy R, Cooper MS. Bone loss in inflammatory disorders. J Endocrinol. 2009;201(3):309–20. https://doi.org/10.1677/JOE-08-0568.
Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 2012;11(3):234–50. https://doi.org/10.1038/nrd3669.
Jeong E, Lee JY. Intrinsic and extrinsic regulation of innate immune receptors. Yonsei Med J. 2011;52(3):379–92. https://doi.org/10.3349/ymj.2011.52.3.379.
Article PubMed PubMed Central Google Scholar
Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73. https://doi.org/10.1128/CMR.00046-08. Table of Contents.
Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249(1):158–75. https://doi.org/10.1111/j.1600-065X.2012.01146.x.
Article PubMed PubMed Central Google Scholar
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–18. https://doi.org/10.18632/oncotarget.23208.
Guder C, Gravius S, Burger C, Wirtz DC, Schildberg FA, Osteoimmunology. A Current Update of the Interplay Between Bone and the Immune System. Front Immunol. 2020;11:58. https://doi.org/10.3389/fimmu.2020.00058.
Article PubMed PubMed Central Google Scholar
Abbas S, Zhang YH, Clohisy JC, Abu-Amer Y. Tumor necrosis factor-alpha inhibits pre-osteoblast differentiation through its type-1 receptor. Cytokine. 2003;22(1–2):33–41. https://doi.org/10.1016/s1043-4666(03)00106-6.
Krauss JL, Roper PM, Ballard A, Shih CC, Fitzpatrick JAJ, Cassat JE, et al. Staphylococcus aureus Infects Osteoclasts and Replicates Intracellularly. mBio. 2019;10(5). https://doi.org/10.1128/mBio.02447-19.
Cremet L, Broquet A, Brulin B, Jacqueline C, Dauvergne S, Brion R, et al. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells. Pathog Dis. 2015;73(8):ftv065. https://doi.org/10.1093/femspd/ftv065.
Article PubMed PubMed Central Google Scholar
Murillo O, Roset A, Sobrino B, Lora-Tamayo J, Verdaguer R, Jimenez-Mejias E, et al. Streptococcal vertebral osteomyelitis: multiple faces of the same disease. Clin Microbiol Infect. 2014;20(1):O33–8. https://doi.org/10.1111/1469-0691.12302.
Saxena Y, Routh S, Mukhopadhaya A, Immunoporosis. Role of Innate Immune Cells in Osteoporosis. Front Immunol. 2021;12:687037. https://doi.org/10.3389/fimmu.2021.687037.
Article PubMed PubMed Central Google Scholar
Fitzgerald KA, Kagan JC. Toll-like Receptors and the Control of Immunity. Cell. 2020;180(6):1044–66. https://doi.org/10.1016/j.cell.2020.02.041.
Article PubMed PubMed Central Google Scholar
Yu L, Wang L, Chen S. Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med. 2010;14(11):2592–603. https://doi.org/10.1111/j.1582-4934.2010.01127.x.
Article PubMed PubMed Central Google Scholar
Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.
Article PubMed PubMed Central Google Scholar
Takami M, Kim N, Rho J, Choi Y. Stimulation by toll-like receptors inhibits osteoclast differentiation. J Immunol. 2002;169(3):1516–23. https://doi.org/10.4049/jimmunol.169.3.1516.
He X, Wang H, Jin T, Xu Y, Mei L, Yang J. TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling. PLoS ONE. 2016;11(3):e0149876. https://doi.org/10.1371/journal.pone.0149876.
Article PubMed PubMed Central Google Scholar
Zhou Z, Han JY, Xi CX, Xie JX, Feng X, Wang CY, et al. HMGB1 regulates RANKL-induced osteoclastogenesis in a manner dependent on RAGE. J Bone Min Res. 2008;23(7):1084–96. https://doi.org/10.1359/jbmr.080234.
Koh JM, Lee YS, Kim YS, Park SH, Lee SH, Kim HH, et al. Heat shock protein 60 causes osteoclastic bone resorption via toll-like receptor-2 in estrogen deficiency. Bone. 2009;45(4):650–60. https://doi.org/10.1016/j.bone.2009.06.007.
Ji JD, Park-Min KH, Shen Z, Fajardo RJ, Goldring SR, McHugh KP, et al. Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-gamma in human osteoclast precursors. J Immunol. 2009;183(11):7223–33. https://doi.org/10.4049/jimmunol.0900072.
AlQranei MS, Senbanjo LT, Aljohani H, Hamza T, Chellaiah MA, Lipopolysaccharide-. TLR-4 Axis regulates Osteoclastogenesis independent of RANKL/RANK signaling. BMC Immunol. 2021;22(1):23. https://doi.org/10.1186/s12865-021-00409-9. * Demonstrated the requirement of prior RANKL signaling and TNF-α secretion for LPS-induced osteoclast differentiation.
Tominari T, Sanada A, Ichimaru R, Matsumoto C, Hirata M, Itoh Y et al. Gram-positive bacteria cell wall-derived lipoteichoic acid induces inflammatory alveolar bone loss through prostaglandin E production in osteoblasts. Sci Rep. 2021;11(1):13353. doi: 10.1038/s41598-021-92744-5. * First study to show Gram-positive bacteria cell wall component lipoteichoic acid can promote periodontitis by inducing PGE2 expression in osteoblasts.
Yim M. The Role of Toll-Like Receptors in Osteoclastogenesis. J Bone Metab. 2020;27(4):227–35. https://doi.org/10.11005/jbm.2020.27.4.227.
Article PubMed PubMed Central Google Scholar
van den Berk LC, Jansen BJ, Siebers-Vermeulen KG, Netea MG, Latuhihin T, Bergevoet S, et al. Toll-like receptor triggering in cord blood mesenchymal stem cells. J Cell Mol Med. 2009;13(9B):3415–26. https://doi.org/10.1111/j.1582-4934.2009.00653.x.
Bryant CE, Symmons M, Gay NJ. Toll-like receptor signalling through macromolecular protein complexes. Mol Immunol. 2015;63(2):162–5. https://doi.org/10.1016/j.molimm.2014.06.033.
Hegewald AB, Breitwieser K, Ottinger SM, Mobarrez F, Korotkova M, Rethi B, et al. Extracellular miR-574-5p Induces Osteoclast Differentiation via TLR 7/8 in Rheumatoid Arthritis. Front Immunol. 2020;11:585282. https://doi.org/10.3389/fimmu.2020.585282.
Article PubMed PubMed Central Google Scholar
Niu Q, Gao J, Wang L, Liu J, Zhang L. Regulation of differentiation and generation of osteoclasts in rheumatoid arthritis. Front Immunol. 2022;13:1034050. https://doi.org/10.3389/fimmu.2022.1034050.
Article PubMed PubMed Central Google Scholar
Kim KW, Kim BM, Won JY, Lee KA, Kim HR, Lee SH. Toll-like receptor 7 regulates osteoclastogenesis in rheumatoid arthritis. J Biochem. 2019;166(3):259–70. https://doi.org/10.1093/jb/mvz033.
留言 (0)