Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A. 2000;97(4):1566–71. https://doi.org/10.1073/pnas.97.4.1566.
Article CAS PubMed PubMed Central Google Scholar
Takayanagi H. RANKL as the master regulator of osteoclast differentiation. J Bone Miner Metab. 2021;39(1):13–8. https://doi.org/10.1007/s00774-020-01191-1.
Article CAS PubMed Google Scholar
McGonigle JS, Giachelli CM, Scatena M. Osteoprotegerin and RANKL differentially regulate angiogenesis and endothelial cell function. Angiogenesis. 2008;12(1):35–46. https://doi.org/10.1007/s10456-008-9127-z.
Article CAS PubMed Google Scholar
Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin and its ligands in vascular function. Int J Mol Sci. 2019;20(3):705. https://doi.org/10.3390/ijms20030705.
Article CAS PubMed PubMed Central Google Scholar
Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen. 2020;40(1):2. https://doi.org/10.1186/s41232-019-0111-3.
Article CAS PubMed PubMed Central Google Scholar
Ming J, Cronin SJF, Penninger JM. Targeting the RANKL/RANK/OPG Axis for Cancer Therapy. Front Oncol. 2020;10:1283. https://doi.org/10.3389/fonc.2020.01283.
Article PubMed PubMed Central Google Scholar
Glasnovic A, O’Mara N, Kovacic N, Grcevic D, Gajovic S. RANK/RANKL/OPG Signaling in the Brain: A Systematic Review of the Literature. Front Neurol. 2020;11:590480. https://doi.org/10.3389/fneur.2020.590480.
Article PubMed PubMed Central Google Scholar
Hanada R, Leibbrandt A, Hanada T, Kitaoka S, Furuyashiki T, Fujihara H, et al. Central control of fever and female body temperature by RANKL/RANK. Nature. 2009;462(7272):505–9. https://doi.org/10.1038/nature08596.
Article CAS PubMed Google Scholar
Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561(7722):195–200. https://doi.org/10.1038/s41586-018-0482-7.
Article CAS PubMed Google Scholar
Cariati I, Bonanni R, Onorato F, Mastrogregori A, Rossi D, Iundusi R, et al. Role of Physical Activity in Bone-Muscle Crosstalk: Biological Aspects and Clinical Implications. J Funct Morphol Kinesiol. 2021;6(2):55. https://doi.org/10.3390/jfmk6020055.
Article PubMed PubMed Central Google Scholar
Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19. https://doi.org/10.1016/s0092-8674(00)80209-3.
Article CAS PubMed Google Scholar
Kostenuik PJ, Nguyen HQ, McCabe J, Warmington KS, Kurahara C, Sun N, et al. Denosumab, a Fully Human Monoclonal Antibody to RANKL, Inhibits Bone Resorption and Increases BMD in Knock-In Mice That Express Chimeric (Murine/Human) RANKL. J Bone Miner Res. 2009;24(2):182–95. https://doi.org/10.1359/jbmr.081112.
Article CAS PubMed Google Scholar
Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65. https://doi.org/10.1056/NEJMoa0809493.
Article CAS PubMed Google Scholar
Pang KL, Low NY, Chin KY. A Review on the Role of Denosumab in Fracture Prevention. Drug Des Devel Ther. 2020;14:4029–51. https://doi.org/10.2147/DDDT.S270829.
Article CAS PubMed PubMed Central Google Scholar
Dufresne SS, Dumont NA, Bouchard P, Lavergne É, Penninger JM, Frenette J. Osteoprotegerin protects against muscular dystrophy. Am J Pathol. 2015;185(4):920–6. https://doi.org/10.1016/j.ajpath.2015.01.006.
Article CAS PubMed Google Scholar
Chotiyarnwong P, McCloskey E, Eastell R, McClung MR, Gielen E, Gostage J, et al. A Pooled Analysis of Fall Incidence From Placebo-controlled Trials of Denosumab. J Bone Miner Res. 2020;35(6):1014–21.
Article CAS PubMed Google Scholar
Bone GH, Bolognese AM, Yuen KC, Kendler LD, Wang LH, Liu LY, et al. Effects of Denosumab on Bone Mineral Density and Bone Turnover in Postmenopausal Women. J Clin Endocrinol Metab. 2008;93(6):2149–57. https://doi.org/10.1210/jc.2007-2814.
Article CAS PubMed Google Scholar
Langdahl LB, Teglbjærg SC, Ho LP-R, Chapurlat MR, Czerwinski DE, Kendler AD, et al. A 24-Month Study Evaluating the Efficacy and Safety of Denosumab for the Treatment of Men With Low Bone Mineral Density: Results From the ADAMO Trial. J Clin Endocrinol Metabolism. 2015;100(4):1335–42. https://doi.org/10.1210/jc.2014-4079.
Ellis GK, Bone HG, Chlebowski R, Paul D, Spadafora S, Smith J, et al. Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol. 2008;26(30):4875–82. https://doi.org/10.1200/JCO.2008.16.3832.
Article CAS PubMed Google Scholar
Smith MR, Egerdie B, Hernández Toriz N, Feldman R, Tammela TLJ, Saad F, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009;361(8):745–55. https://doi.org/10.1056/NEJMoa0809003.
Article CAS PubMed PubMed Central Google Scholar
Phu S, Bani Hassan E, Vogrin S, Kirk B, Duque G. Effect of Denosumab on Falls, Muscle Strength, and Function in Community-Dwelling Older Adults. J Am Geriatr Soc. 2019;67(12):2660–1. https://doi.org/10.1111/jgs.16165.
Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J Clin Invest. 2019;129(8):3214–23. https://doi.org/10.1172/JCI125915.
Article PubMed PubMed Central Google Scholar
Rupp T, von Vopelius E, Strahl A, Oheim R, Barvencik F, Amling M, et al. Beneficial effects of denosumab on muscle performance in patients with low BMD: a retrospective, propensity score-matched study. Osteoporos Int. 2022;33(10):2177–84. https://doi.org/10.1007/s00198-022-06470-3.
Article CAS PubMed PubMed Central Google Scholar
Lefkowitz SS, Lefkowitz DL, Kethley J. Treatment of facioscapulohumeral muscular dystrophy with Denosumab. Am J Case Rep. 2012;13:66–8. https://doi.org/10.12659/AJCR.882771.
Article PubMed PubMed Central Google Scholar
Ralston SH, Taylor JP. Rare Inherited forms of Paget’s Disease and Related Syndromes. Calcif Tissue Int. 2019;104(5):501–16. https://doi.org/10.1007/s00223-019-00520-5.
Article CAS PubMed PubMed Central Google Scholar
Theodorou SJ, Theodorou DJ. Global loss of bone, muscle, and fat mass in a patient with juvenile Paget disease (hereditary hyperphosphatasia). J Inherit Metab Dis. 2022;45(6):1203–4. https://doi.org/10.1002/jimd.12559.
Kerr NM, Cassinelli HR, DiMeglio LA, Tau C, Tüysüz B, Cundy T, et al. Ocular manifestations of juvenile Paget disease. Arch Ophthalmol. 2010;128(6):698–703. https://doi.org/10.1001/archophthalmol.2010.76.
留言 (0)