Glycopeptides: Insights Towards Resistance, Clinical Pharmacokinetics and Pharmacodynamics

Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425–448. https://doi.org/10.1021/cr030103a

Article  CAS  PubMed  Google Scholar 

McComas CC, Crowley BM, Boger DL (2003) Partitioning the loss in vancomycin binding affinity for D-Ala-D-Lac into lost H-bond and repulsive lone pair contributions. J Am Chem Soc 125:9314–9315. https://doi.org/10.1021/ja035901x

Article  CAS  PubMed  Google Scholar 

Sarkar P, Yarlagadda V, Ghosh C, Haldar J (2017) A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. Medchemcomm. 8:516–533. https://doi.org/10.1039/C6MD00585C

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhanda G, Sarkar P, Samaddar S, Haldar J (2018) Battle against vancomycin-resistant bacteria: recent developments in chemical strategies. J Med Chem 62:3184–3205. https://doi.org/10.1021/acs.jmedchem.8b01093

Article  CAS  PubMed  Google Scholar 

Acharya Y, Dhanda G, Sarkar P, Haldar J (2022) Pursuit of next-generation glycopeptides: a journey with vancomycin. Chem Commun 58:1881–1897. https://doi.org/10.1039/D1CC06635H

Article  CAS  Google Scholar 

Kociolek LK, Gerding DN (2016) Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat Rev Gastroenterol Hepatol 13:150–160. https://doi.org/10.1038/nrgastro.2015.220

Article  CAS  PubMed  Google Scholar 

Jenkins C, Meyer D, Dreyfus M, Larreu MJ (1974) Willebrand factor and ristocetin I. Mechanism of ristocetin-induced platelet aggregation. Br J Haematol 28:561–578. https://doi.org/10.1111/j.1365-2141.1974.tb06675.x

Article  CAS  PubMed  Google Scholar 

Meyer D, Jenkins C, Dreyflis M, Fressinaud E, Lariueu MJ (1974) Willebrand factor and ristocetin II. Relationship between willebrand factor, willebrand antigen and factor-VIII activity. Br J Haematol 28:579–599. https://doi.org/10.1111/j.1365-2141.1974.tb06676.x

Article  CAS  PubMed  Google Scholar 

Bager F et al (1997) Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Prev Vet Med 31:95–112. https://doi.org/10.1016/S0167-5877(96)01119-1

Article  CAS  PubMed  Google Scholar 

Nicolaou K, Boddy CN, Bräse S, Winssinger N (1999) Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew Chem 38:2096–2152. https://doi.org/10.1002/(SICI)1521-3773(19990802)38:15%3C2096::AID-ANIE2096%3E3.0.CO;2-F

Article  CAS  Google Scholar 

Griffith RSJJOAC (1984) Vancomycin use—an historical review. J Antimicrob Chemother 14:1–5. https://doi.org/10.1093/jac/14.suppl_D1

Article  CAS  PubMed  Google Scholar 

Blaskovich MA, Hansford KA, Butler MS, Jia Z, Mark AE, Cooper MA (2018) Developments in glycopeptide antibiotics. ACS Infect Dis 4:715–735. https://doi.org/10.1021/acsinfecdis.7b00258

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams DH, Kalman JR (1977) Structural and mode of action studies on the antibiotic vancomycin. Evidence from 270-MHz proton magnetic resonance. J Am Chem Soc 99:2768–2774. https://doi.org/10.1021/ja00450a058

Article  CAS  PubMed  Google Scholar 

Barna J, Williams DH (1984) The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Ann Rev Microbiol 38:339–357

Article  CAS  Google Scholar 

Westwell MS, Bardsley B, Dancer RJ, Try AC, Williams DH (1996) Cooperativity in ligand binding expressed at a model cell membrane by the vancomycin group antibiotics. Chem Commun 5:589–590. https://doi.org/10.1039/cc9960000589

Article  Google Scholar 

Mackay JP et al (1994) Glycopeptide antibiotic activity and the possible role of dimerization: a model for biological signaling. J Am Chem Soc 116:4581–4590. https://doi.org/10.1021/ja00090a006

Article  CAS  Google Scholar 

Groves P, Searle MS, Mackay JP, Williams DH (1994) The structure of an asymmetric dimer relevant to the mode of action of the glycopeptide antibiotics. Structure 2:747–754. https://doi.org/10.1016/s0969-2126(94)00075-1

Article  CAS  PubMed  Google Scholar 

Mackay JP, Gerhard U, Beauregard DA, Maplestone RA, Williams DH (1994) Dissection of the contributions toward dimerization of glycopeptide antibiotics. J Am Chem Soc 116:4573–4580. https://doi.org/10.1021/ja00090a005

Article  CAS  Google Scholar 

Kannan R, Harris CM, Harris TM, Waltho JP, Skelton NJ, Williams DH (1988) Function of the amino sugar and N-terminal amino acid of the antibiotic vancomycin in its complexation with cell wall peptides. J Am Chem Soc 110:2946–2953. https://doi.org/10.1021/ja00217a042

Article  CAS  Google Scholar 

Butler MS, Blaskovich MA, Cooper MA (2013) Antibiotics in the clinical pipeline in 2013. J Antibiot 66:571–591

Article  CAS  Google Scholar 

Beauregard DA, Williams DH, Gwynn MN (1995) Knowles Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob Agents Chemother 39:781–785. https://doi.org/10.1128/aac.39.3.781

Article  CAS  PubMed  PubMed Central  Google Scholar 

Economou NJ et al (2013) Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach. Acta Cryst 69:520–533. https://doi.org/10.1107/S0907444912050469

Article  CAS  Google Scholar 

Barna JC, Williams DH, Williamson MP (1985) Structural features that affect the binding of teicoplanin, ristocetin A, and their derivatives to the bacterial cell-wall model N-acetyl-D-alanyl-D-alanine. J Chem Soc Chem Commun. https://doi.org/10.1039/c39850000254

Article  Google Scholar 

Charneski L, Patel PN, Sym DJAOP (2009) Telavancin: a novel lipoglycopeptide antibiotic. Ann Pharmacother 43:928–938. https://doi.org/10.1345/aph.1G417

Article  CAS  PubMed  Google Scholar 

Higgins DL, Chang R, Debabov DV (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:1127–1134. https://doi.org/10.1128/aac.49.3.1127-1134.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karlowsky JA, Nichol K, Zhanel GG (2015) Telavancin: mechanisms of action, in vitro activity, and mechanisms of resistance. Clin Infect Dis 61:S58–S68. https://doi.org/10.1093/cid/civ534

Article  CAS  PubMed  Google Scholar 

Leadbetter MR, Adams SM, Bazzini B (2004) Hydrophobic vancomycin derivatives with improved ADME properties discovery of telavancin (TD-6424). J Antibiot 57:326–336. https://doi.org/10.7164/antibiotics.57.326

Article  CAS  Google Scholar 

Judice JK, Pace JL (2003) Semi-synthetic glycopeptide antibacterials. Biorg Med Chem Lett 13:4165–4168. https://doi.org/10.1016/j.bmcl.2003.08.067

Article  CAS  Google Scholar 

Lunde CS et al (2009) Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother 53:3375–3383. https://doi.org/10.1128/aac.01710-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pfaller M, Rhomberg P, Sader H, Mendes R, Jones RN (2010) Telavancin activity against Gram-positive bacteria isolated from patients with skin and skin-structure infections. J Chemother 22:304–311. https://doi.org/10.1179/joc.2010.22.5.304

Article  CAS  PubMed  Google Scholar 

Malabarba A, Goldstein BP (2005) Origin, structure, and activity in vitro and in vivo of dalbavancin. J Antimicrob Chemother 55:ii15–ii20. https://doi.org/10.1093/jac/dki005

Article  CAS  PubMed  Google Scholar 

Pace JL, Krause K, Johnston D (2003) In vitro activity of TD-6424 against Staphylococcus aureus. Antimicrob Agents Chemother 47:3602–3604. https://doi.org/10.1128/aac.47.11.3602-3604.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Economou NJ, Nahoum V, Weeks SD (2012) A carrier protein strategy yields the structure of dalbavancin. J Am Chem Soc 134:4637–4645. https://doi.org/10.1128/aac.47.11.3602-3604.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu W, Oberthür M, Leimkuhler C, Tao J, Kahne D, Walsh CT (2004) Characterization of a regiospecific epivancosaminyl transferase GtfA and enzymatic reconstitution of the antibiotic chloroeremomycin. PNAS 101:4390–4395. https://doi.org/10.1073/pnas.0400277101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouza E, Burillo A (2010) Oritavancin: a novel lipoglycopeptide active against Gram-positive pathogens including multiresistant strains. Int J Antimicrob Agents 36:401–407.

留言 (0)

沒有登入
gif