Bacillus thuringiensis promotes systemic immunity in tomato, controlling pests and pathogens and promoting yield

Akram, W., Mahboob, A., & Javed, A. A. (2013). Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt. European Journal of Microbiology & Immunology, 3(4), 275–280. https://doi.org/10.1556/EuJMI.3.2013.4.7

Article  Google Scholar 

An, S.-Q., Potnis, N., Dow, M., Vorhölter, F.-J., He, Y.-Q., Becker, A., et al. (2019). Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiology Reviews, 44(1), 1–32. https://doi.org/10.1093/femsre/fuz024

Article  CAS  PubMed Central  Google Scholar 

Anand, G., Leibman-Markus, M., Elkabetz, D., & Bar, M. (2021). Method for the production and purification of plant immuno-active xylanase from trichoderma. International Journal of Molecular Sciences, 22(8), 4214. https://doi.org/10.3390/ijms22084214

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arif, I., Batool, M., & Schenk, P. M. (2020). Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends in Biotechnology, 38(12), 1385–1396. https://doi.org/10.1016/j.tibtech.2020.04.015

Article  CAS  PubMed  Google Scholar 

Azizoglu, U. (2019). Bacillus thuringiensis as a biofertilizer and biostimulator: A mini-review of the little-known plant growth-promoting properties of Bt. Current Microbiology, 76(11), 1379–1385. https://doi.org/10.1007/s00284-019-01705-9

Article  CAS  PubMed  Google Scholar 

Azizoglu, U., Salehi Jouzani, G., Sansinenea, E., & Sanchis-Borja, V. (2023). Biotechnological advances in Bacillus thuringiensis and its toxins: Recent updates. Reviews in Environmental Science and Bio/technology, 22(2), 319–348. https://doi.org/10.1007/s11157-023-09652-5

Article  CAS  Google Scholar 

Batalla-Carrera, L., Morton, A., & García-del-Pino, F. (2010). Efficacy of entomopathogenic nematodes against the tomato leafminer Tuta absoluta in laboratory and greenhouse conditions. BioControl, 55(4), 523–530. https://doi.org/10.1007/s10526-010-9284-z

Article  Google Scholar 

Birch, A. N. E., Begg, G. S., & Squire, G. R. (2011). How Agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems. Journal of Experimental Botany, 62(10), 3251–3261. https://doi.org/10.1093/jxb/err064

Article  CAS  Google Scholar 

Bravo, A., Likitvivatanavong, S., Gill, S. S., & Soberón, M. (2011). Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41(7), 423–431. https://doi.org/10.1016/j.ibmb.2011.02.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cammarano, D., Jamshidi, S., Hoogenboom, G., Ruane, A. C., Niyogi, D., & Ronga, D. (2022). Processing tomato production is expected to decrease by 2050 due to the projected increase in temperature. Nature Food, 3(6), 437–444. https://doi.org/10.1038/s43016-022-00521-y

Article  PubMed  Google Scholar 

Conrath, U., Beckers, G. J. M., Langenbach, C. J. G., & Jaskiewicz, M. R. (2015). Priming for enhanced defense. Annual Review of Phytopathology, 53(1), 97–119. https://doi.org/10.1146/annurev-phyto-080614-120132

Article  CAS  PubMed  Google Scholar 

Contreras-Cornejo, H. A., Ortiz-Castro, R., & López-Bucio, J. (2013). Promotion of plant growth and the induction of systemic defence by Trichoderma: Physiology, genetics and gene expression. In Mukherjee, P. K. (Ed.), Trichoderma: Biology and Applications (pp. 173–194). CPI Group Ltd. https://doi.org/10.1079/9781780642475.0173

Copping, L. G., & Menn, J. J. (2000). Biopesticides: A review of their action, applications and efficacy. Pest Management Science, 56(8), 651–676. https://doi.org/10.1002/1526-4998(200008)56:8%3c651::AID-PS201%3e3.0.CO;2-U

Article  CAS  Google Scholar 

Czosnek, H., & Rubinstein, G. (1997). Long-term association of tomato yellow leaf curl virus with its whitefly vector Bemisia tabaci: Effect on the insect transmission capacity, longevity and fecundity. Journal of General Virology, 78(10), 2683–2689. https://doi.org/10.1099/0022-1317-78-10-2683

Article  PubMed  Google Scholar 

Deist, B. R., & Bonning, B. C. (2016). Biotechnological approaches to aphid management. CRC Press. https://doi.org/10.1201/b19967

Book  Google Scholar 

Delfim, J., & Dijoo, Z. K. (2021). Bacillus thuringiensis as a biofertilizer and plant growth promoter. In G. H. Dar, R. A. Bhat, M. A. Mehmood, & K. R. Hakeem (Eds.), Microbiota and biofertilizers: Ecofriendly tools for reclamation of degraded soil environs (Vol. 2, pp. 251–265). Springer International Publishing. https://doi.org/10.1007/978-3-030-61010-4_12

Chapter  Google Scholar 

Derrick, B., & White, P. (2016). Why Welch’s test is Type I error robust. The Quantitative Methods for Psychology, 12, 30–38. https://doi.org/10.20982/tqmp.12.1.p030

Article  Google Scholar 

Djenane, Z., Nateche, F., Amziane, M., Gomis-Cebolla, J., El-Aichar, F., Khorf, H., & Ferré, J. (2017). Assessment of the antimicrobial activity and the entomocidal potential of Bacillus thuringiensis isolates from Algeria. Toxins, 9(4), 139. https://doi.org/10.3390/toxins9040139

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elad, Y. (2000). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19(8–10), 709–714. https://doi.org/10.1016/S0261-2194(00)00094-6

Article  Google Scholar 

Elad, Y., Messika, Y., Brand, M., Rav David, D., & Sztejnberg, A. (2007). Effect of microclimate on Leveillula taurica powdery mildew of sweet pepper. Phytopathology, 97(7), 813–824. https://doi.org/10.1094/PHYTO-97-7-0813

Article  PubMed  Google Scholar 

Elad, Y., Rav David, D., Meller Harel, Y., Borenshtein, M., Ben Kalifa, H., Silber, A., & Graber, E. R. (2010). Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 100(9), 913–921. https://doi.org/10.1094/PHYTO-100-9-0913

Article  PubMed  Google Scholar 

Fillinger, S., & Elad, Y. (2016). Botrytis - the fungus, the pathogen and its management in agricultural systems. https://books.google.co.il/books/about/Botrytis_the_Fungus_the_Pathogen_and_Its.html?id=1FsNswEACAAJ&redir_esc=y. Accessed 27 Feb 2018.

Flood, J. (2010). The importance of plant health to food security. Food Security, 2, 215–231. https://doi.org/10.1007/s12571-010-0072-5

Article  Google Scholar 

Furman-Matarasso, N., Cohen, E., Du, Q., Chejanovsky, N., Hanania, U., & Avni, A. (1999). A point mutation in the ethylene-inducing xylanase elicitor inhibits the β-1-4-endoxylanase activity but not the elicitation activity1. Plant Physiology, 121(2), 345–352. https://doi.org/10.1104/pp.121.2.345

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu, Y.-Q., Wildermuth, M. C., Chakravarthy, S., Loh, Y.-T., Yang, C., He, X., et al. (2002). Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. The Plant Cell, 14(4), 817–831. https://doi.org/10.1105/tpc.000794

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guedes, R. N. C., Roditakis, E., Campos, M. R., Haddi, K., Bielza, P., Siqueira, H. A. A., et al. (2019). Insecticide resistance in the tomato pinworm Tuta absoluta: Patterns, spread, mechanisms, management and outlook. Journal of Pest Science, 92(3), 1–14. https://doi.org/10.1007/s10340-019-01086-9

Article  Google Scholar 

Gupta, R., & Bar, M. (2020). Plant immunity, priming, and systemic resistance as mechanisms for Trichoderma spp. biocontrol (pp. 81–110). Springer, Singapore. https://doi.org/10.1007/978-981-15-3321-1_5

Book  Google Scholar 

Gupta, R., Elkabetz, D., Leibman-Markus, M., Sayas, T., Schneider, A., Jami, E., et al. (2021a). Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues. ISME Journal, 16(1), 122–137. https://doi.org/10.1038/s41396-021-01060-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta, R., Keppanan, R., Leibman-Markus, M., Rav-David, D., Elad, Y., Ment, D., & Bar, M. (2022a). The Entomopathogenic Fungi Metarhizium brunneum and Beauveria bassiana Promote Systemic Immunity and Confer Resistance to a Broad Range of Pests and Pathogens in Tomato. Phytopathology, 112(4), 784–793. https://doi.org/10.1094/PHYTO-08-21-0343-R

Article  CAS  PubMed  Google Scholar 

Gupta, R., Leibman-Markus, M., Anand, G., Rav David, D., Yermiyahu, U., Elad, Y., & Bar, M. (2022b). Nutrient elements promote disease resistance in tomato by differentially activating immune pathways. Phytopathology. https://doi.org/10.1094/PHYTO-02-22-0052-R

Article  PubMed  Google Scholar 

Gupta, R., Leibman-Markus, M., Marash, I., Kovetz, N., Rav-David, D., Elad, Y., & Bar, M. (2021b). Root zone warming represses foliar diseases in tomato by inducing systemic immunity. Plant Cell and Environment, 44(7), 2277–2289. https://doi.org/10.1111/pce.14006

Article  CAS  Google Scholar 

Gupta, R., Leibman-Markus, M., Pizarro, L., & Bar, M. (2020a). Cytokinin induces bacterial pathogen resistance in tomato. In press.

Google Scholar 

Gupta, R., Pizarro, L., Leibman-Markus, M., Marash, I., & Bar, M. (2020b). Cytokinin response induces immunity and fungal pathogen resistance, and modulates trafficking of the PRR LeEIX2 in tomato. Molecular Plant Pathology, 21(10), 1287–1306. https://doi.org/10.1111/mpp.12978

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hang, A., Obert, D., Gironella, A. I. N., & Burton, C. S. (2007). Barley amylose and β-glucan: Their relationships to protein, agronomic traits, and environmental factors. Crop Science, 47(4), 1754–1760. https://doi.org/10.2135/cropsci2006.06.0429

Article  CAS  Google Scholar 

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species - opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56. https://doi.org/10.1038/nrmicro797

Article  CAS  PubMed  Google Scholar 

Hernández-Huerta, J., Tamez-Guerra, P., Gomez-Flores, R., Delgado-Gardea, M. C. E., Robles-Hernández, L., Gonzalez-Franco, A. C., & Infante-Ramirez, R. (2023). Pepper growth promotion and biocontrol against Xanthomonas euvesicatoria by Bacillus cereus and Bacillus thuringiensis formulations. PeerJ, 11, e14633. https://doi.org/10.7717/peerj.14633

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho

留言 (0)

沒有登入
gif