Mechanistic complement of autosomal dominant polycystic kidney disease: the role of aquaporins

Lanktree MB, Haghighi A, Guiard E, Iliuta IA, Song X, Harris PC, Paterson AD, Pei Y (2018) Prevalence estimates of polycystic kidney and liver disease by population sequencing. J Am Soc Nephrol 29:2593–2600. https://doi.org/10.1681/ASN.2018050493

Article  CAS  PubMed  PubMed Central  Google Scholar 

Willey CJ, Blais JD, Hall AK, Krasa HB, Makin AJ, Czerwiec FS (2017) Prevalence of autosomal dominant polycystic kidney disease in the European Union. Nephrol Dial Transplant 32:1356–1363. https://doi.org/10.1093/ndt/gfw240

Article  PubMed  Google Scholar 

Guay-Woodford LM (2003) Murine models of polycystic kidney disease: molecular and therapeutic insights. Am J Physiol Renal Physiol 285:F1034–F1049. https://doi.org/10.1152/ajprenal.00195.2003

Article  CAS  PubMed  Google Scholar 

Song X, Di Giovanni V, He N, Wang K, Ingram A, Rosenblum ND, Pei Y (2009) Systems biology of autosomal dominant polycystic kidney disease (Adpkd): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 18:2328–2343. https://doi.org/10.1093/hmg/ddp165

Article  CAS  PubMed  Google Scholar 

Watnick T, He N, Wang K, Liang Y, Parfrey P, Hefferton D, St George-Hyslop P, Germino G, Pei Y (2000) Mutations of Pkd1 in Adpkd2 cysts suggest a pathogenic effect of trans-heterozygous mutations. Nat Genet 25:143–144. https://doi.org/10.1038/75981

Article  CAS  PubMed  Google Scholar 

Neumann HP, Jilg C, Bacher J, Nabulsi Z, Malinoc A, Hummel B, Hoffmann MM, Ortiz-Bruechle N, Glasker S, Pisarski P et al (2013) Epidemiology of autosomal-dominant polycystic kidney disease: an in-depth clinical study for South-Western Germany. Nephrol Dial Transplant 28:1472–1487. https://doi.org/10.1093/ndt/gfs551

Article  CAS  PubMed  Google Scholar 

Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369:1287–1301. https://doi.org/10.1016/S0140-6736(07)60601-1

Article  PubMed  Google Scholar 

Su W, Cao R, Zhang XY, Guan Y (2020) Aquaporins in the kidney: physiology and pathophysiology. Am J Physiol Renal Physiol 318:F193-203. https://doi.org/10.1152/ajprenal.00304.2019

Article  CAS  PubMed  Google Scholar 

Moeller HB, Fuglsang CH, Fenton RA (2016) Renal aquaporins and water balance disorders. Best Pract Res Clin Endocrinol Metab 30:277–288. https://doi.org/10.1016/j.beem.2016.02.012

Article  CAS  PubMed  Google Scholar 

Magouliotis DE, Tasiopoulou VS, Svokos AA, Svokos KA (2020) Aquaporins in health and disease. Adv Clin Chem 98:149–171. https://doi.org/10.1016/bs.acc.2020.02.005

Article  CAS  PubMed  Google Scholar 

He J, Yang B (2019) Aquaporins in renal diseases. Int J Mol Sci 20:366. https://doi.org/10.3390/ijms20020366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chebib FT, Perrone RD, Chapman AB, Dahl NK, Harris PC, Mrug M, Mustafa RA, Rastogi A, Watnick T, Yu ASL et al (2018) A practical guide for treatment of rapidly progressive Adpkd with tolvaptan. J Am Soc Nephrol 29:2458–2470. https://doi.org/10.1681/ASN.2018060590

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blair HA (2019) Tolvaptan: a review in autosomal dominant polycystic kidney disease. Drugs 79:303–313. https://doi.org/10.1007/s40265-019-1056-1

Article  CAS  PubMed  Google Scholar 

Harris PC, Ward CJ, Peral B, Hughes J (1995) Autosomal dominant polycystic kidney disease: molecular analysis. Hum Mol Genet 4:1745–1749. https://doi.org/10.1093/hmg/4.suppl_1.1745

Article  CAS  PubMed  Google Scholar 

Qian F, Watnick TJ, Onuchic LF, Germino GG (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87:979–987. https://doi.org/10.1016/s0092-8674(00)81793-6

Article  CAS  PubMed  Google Scholar 

Brasier JL, Henske EP (1997) Loss of the polycystic kidney disease (Pkd1) region of chromosome 16P13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J Clin Invest 99:194–199. https://doi.org/10.1172/JCI119147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu W, Shen X, Pavlova A, Lakkis M, Ward CJ, Pritchard L, Harris PC, Genest DR, Perez-Atayde AR, Zhou J (2001) Comparison of Pkd1-targeted mutants reveals that loss of polycystin-1 causes cystogenesis and bone defects. Hum Mol Genet 10:2385–2396. https://doi.org/10.1093/hmg/10.21.2385

Article  CAS  PubMed  Google Scholar 

Muto S, Aiba A, Saito Y, Nakao K, Nakamura K, Tomita K, Kitamura T, Kurabayashi M, Nagai R, Higashihara E et al (2002) Pioglitazone improves the phenotype and molecular defects of a targeted Pkd1 mutant. Hum Mol Genet 11:1731–1742. https://doi.org/10.1093/hmg/11.15.1731

Article  CAS  PubMed  Google Scholar 

Wu G, Tian X, Nishimura S, Markowitz GS, D’Agati V, Park JH, Yao L, Li L, Geng L, Zhao H et al (2002) Trans-heterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease. Hum Mol Genet 11:1845–1854. https://doi.org/10.1093/hmg/11.16.1845

Article  CAS  PubMed  Google Scholar 

Koptides M, Mean R, Demetriou K, Pierides A, Deltas CC (2000) Genetic evidence for a trans-heterozygous model for cystogenesis in autosomal dominant polycystic kidney disease. Hum Mol Genet 9:447–452. https://doi.org/10.1093/hmg/9.3.447

Article  CAS  PubMed  Google Scholar 

Pazour GJ (2004) Intraflagellar transport and cilia-dependent renal disease: the ciliary hypothesis of polycystic kidney disease. J Am Soc Nephrol 15:2528–2536. https://doi.org/10.1097/01.ASN.0000141055.57643.E0

Article  PubMed  Google Scholar 

Ma M, Tian X, Igarashi P, Pazour GJ, Somlo S (2013) Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat Genet 45:1004–1012. https://doi.org/10.1038/ng.2715

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen JN, Kaiser F, Leyendecker P, Stüven B, Krause JH, Derakhshandeh F, Irfan J, Sroka TJ, Preval KM, Desai PB et al (2022) A camp signalosome in primary cilia drives gene expression and kidney cyst formation. EMBO Rep 23:e54315. https://doi.org/10.15252/embr.202154315

Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529. https://doi.org/10.1146/annurev.physiol.67.040403.101353

Article  CAS  PubMed  Google Scholar 

Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. BioEssays 26:844–856. https://doi.org/10.1002/bies.20069

Article  CAS  PubMed  Google Scholar 

Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in Orpk mice with polycystic kidney disease. Curr Biol 12:R378–R380. https://doi.org/10.1016/s0960-9822(02)00877-1

Article  CAS  PubMed  Google Scholar 

Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516. https://doi.org/10.1097/01.asn.0000029587.47950.25

Article  CAS  PubMed  Google Scholar 

Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137. https://doi.org/10.1038/ng1076

Article  CAS  PubMed  Google Scholar 

Hilgendorf KI, Johnson CT, Mezger A, Rice SL, Norris AM, Demeter J, Greenleaf WJ, Reiter JF, Kopinke D, Jackson PK (2019) Omega-3 fatty acids activate ciliary ffar4 to control adipogenesis. Cell 179:1289–1305. https://doi.org/10.1016/j.cell.2019.11.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siljee JE, Wang Y, Bernard AA, Ersoy BA, Zhang S, Marley A, Von Zastrow M, Reiter JF, Vaisse C (2018) Subcellular localization of Mc4R with Adcy3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat Genet 50:180–185. https://doi.org/10.1038/s41588-017-0020-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeCaen PG, Delling M, Vien TN, Clapham DE (2013) Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504:315–318. https://doi.org/10.1038/nature12832

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pala R, Alomari N, Nauli SM (2017) Primary cilium-dependent signaling mechanisms. Int J Mol Sci 18:2272. https://doi.org/10.3390/ijms18112272

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ko JY (2016) Functional study of the primary cilia in Adpkd. Adv Exp Med Biol 933:45–57. https://doi.org/10.1007/978-981-10-2041-4_5

Article 

留言 (0)

沒有登入
gif