Suchacki KJ et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat Commun. 2020;11(1):3097. https://doi.org/10.1038/s41467-020-16878-2.
Attané C, et al. Human Bone Marrow Is Comprised of Adipocytes with Specific Lipid Metabolism. Cell Rep. 2020;30(4):949-958.e6. https://doi.org/10.1016/j.celrep.2019.12.089.
Article CAS PubMed Google Scholar
Rosen CJ and Horowitz MC. Nutrient regulation of bone marrow adipose tissue: skeletal implications of weight loss. Nat Rev Endocrinol. 2023;19(11):626–638. https://doi.org/10.1038/s41574-023-00879-4.
Li Z, et al. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. Elife. 2022;11:e78496. https://doi.org/10.7554/eLife.78496.
Little-Letsinger SE, et al. Exercise and Diet: Uncovering Prospective Mediators of Skeletal Fragility in Bone and Marrow Adipose Tissue. Curr Osteoporos Rep. 2020;18(6):774–789. https://doi.org/10.1007/s11914-020-00634-y.
Li Z, et al. Constitutive bone marrow adipocytes suppress local bone formation. JCI Insight. 2022;7(21):e160915. https://doi.org/10.1172/jci.insight.160915.
Ambrosi TH, et al. Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration. Cell Stem Cell. 2017;20(6):771-784.e6. https://doi.org/10.1016/j.stem.2017.02.009.
Article CAS PubMed PubMed Central Google Scholar
Li J, et al. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev. 2020;52:88–98. https://doi.org/10.1016/j.cytogfr.2020.02.003.
Article CAS PubMed Google Scholar
Zhou BO et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol. 2017;19:891-903. https://doi.org/10.1038/ncb3570.
Labella R, et al. Bone Marrow Adipose Tissue: Regulation of Osteoblastic Niche, Hematopoiesis and Hematological Malignancies. Stem Cell Rev Rep. 2023;19(5):1135–51. https://doi.org/10.1007/s12015-023-10531-3.
Article CAS PubMed Google Scholar
Peci F, et al. The cellular composition and function of the bone marrow niche after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2022;57(9):1357–1364. https://doi.org/10.1038/s41409-022-01728-0.
Zhang X, et al. A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease. Elife. 2021;10:e66275. https://doi.org/10.7554/eLife.66275.
Zhong L, et al. Csf1 from marrow adipogenic precursors is required for osteoclast formation and hematopoiesis in bone. Elife. 2023;12:e82112. https://doi.org/10.7554/eLife.82112.
Liu T, et al. Bone marrow adiposity modulation after long duration spaceflight in astronauts. Nat Commun. 2023 Aug 9;14:4799https://doi.org/10.1038/s41467-023-40572-8.
Valet C, et al. Adipocyte Fatty Acid Transfer Supports Megakaryocyte Maturation. Cell Rep. 2020;32:107875. https://doi.org/10.1016/j.celrep.2020.107875.
Article CAS PubMed Google Scholar
Adler BJ, et al. High fat diet rapidly suppresses B lymphopoiesis by disrupting the supportive capacity of the bone marrow niche. PLoS One. 2014;9:e90639. https://doi.org/10.1371/journal.pone.0090639.
Bilwani FA, et al. Adipocyte-derived soluble factor(s) inhibits early stages of B lymphopoiesis. J Immunol. 2012;189:4379–86. https://doi.org/10.4049/jimmunol.1201176.
Boyd AL, et al. Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nat Cell Biol. 2017;19(11):1336–47. https://doi.org/10.1038/ncb3625.
Article CAS PubMed Google Scholar
Shafat MS, et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood. 2017;129:1320–32.
Article CAS PubMed Google Scholar
Tabe Y, Konopleva M. Leukemia Stem Cells Microenvironment. Adv Exp Med Biol. 2017;1041:19–32.
Article CAS PubMed Google Scholar
Diedrich JD, et al. Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1α activation. Oncotarget. 2016;7:64854-64877. https://doi.org/10.18632/oncotarget.11712.
Wu Q et al. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol J Hematol Oncol 12, 95 (2019).
Wu Q, Li B, Sun S, Sun S. Unraveling Adipocytes and Cancer Links: Is There a Role for Senescence? Front Cell Dev Biol. 2020;8:282.
Article PubMed PubMed Central Google Scholar
Lapeire L, et al. Cancer-Associated Adipose Tissue Promotes Breast Cancer Progression by Paracrine Oncostatin M and Jak/STAT3 Signaling. Cancer Res. 2014;74:6806–19.
Article CAS PubMed Google Scholar
Dirat B, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71:2455–65.
Article CAS PubMed Google Scholar
Sato S, et al. Bone marrow adipocytes induce cancer-associated fibroblasts and immune evasion, enhancing invasion and drug resistance. Cancer Sci. 2023;114:2674–88.
Article CAS PubMed PubMed Central Google Scholar
Herroon MK, et al. Prostate Tumor Cell-Derived IL1β Induces an Inflammatory Phenotype in Bone Marrow Adipocytes and Reduces Sensitivity to Docetaxel via Lipolysis-Dependent Mechanisms. Mol Cancer Res. 2019;17(12):2508-2521. https://doi.org/10.1158/1541-7786.MCR-19-0540.
Fairfield H, et al. Myeloma-Modified Adipocytes Exhibit Metabolic Dysfunction and a Senescence-Associated Secretory Phenotype. Cancer Res. 2021;81:634–47.
Article CAS PubMed Google Scholar
Bianco P, et al. Alkaline phosphatase positive precursors of adipocytes in the human bone marrow. Br J Haematol. 1988;68(4):401–3. https://doi.org/10.1111/j.1365-2141.1988.tb04225.x.
Article CAS PubMed Google Scholar
Naveiras O, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259-63https://doi.org/10.1038/nature08099.
Zinngrebe J, et al. Adipocytes in hematopoiesis and acute leukemia: friends, enemies, or innocent bystanders? Leukemia. 2020;34(9):2305–2316. https://doi.org/10.1038/s41375-020-0886-x.
Zioni N, et al. Inflammatory signals from fatty bone marrow support DNMT3A driven clonal hematopoiesis. Nat Commun. 2023;14:2070.
Pasupuleti SK, et al. Obesity-induced inflammation exacerbates clonal hematopoiesis. J Clin Invest. 2023;133(11):e163968 https://doi.org/10.1172/JCI163968.
Woods GN, et al. Chronic Kidney Disease Is Associated With Greater Bone Marrow Adiposity. J Bone Miner Res. 2018;33(12):2158–2164. https://doi.org/10.1002/jbmr.3562.
Bredella MA, et al. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring). 2011;19(1):49–53. https://doi.org/10.1038/oby.2010.106.
Mistry SD, et al. Sex hormones are negatively associated with vertebral bone marrow fat. Bone. 2018;108:20–24. https://doi.org/10.1016/j.bone.2017.12.009.
Griffith JF, et al. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging. 2012;36(1):225–30. https://doi.org/10.1002/jmri.23619.
De-Morgan A, et al. Male predominance in AML is associated with specific preleukemic mutations. Leukemia. 2021;35(3):867–70. https://doi.org/10.1038/s41375-020-0935-5.
Klepin HD. Myelodysplastic Syndromes and Acute Myeloid Leukemia in the Elderly. Clin Geriatr Med. 2016;32(1):155-73. https://doi.org/10.1016/j.cger.2015.08.010.
Gao Q, et al. Bone Marrow Mesenchymal Stromal Cells: Identification, Classification, and Differentiation. Front Cell Dev Biol. 2022;9:787118. https://doi.org/10.3389/fcell.2021.787118.
Wu J, et al. The Differentiation Balance of Bone Marrow Mesenchymal Stem Cells Is Crucial to Hematopoiesis. Stem Cells Int. 2018;2018:1540148. https://doi.org/10.1155/2018/1540148.
Le Y, et al. Adipogenic Mesenchymal Stromal Cells from Bone Marrow and Their Hematopoietic Supportive Role: Towards Understanding the Permissive Marrow Microenvironment in Acute Myeloid Leukemia. Stem Cell Rev Rep. 2016;12:235–44.
Wu Y, et al. Impaired Expression of Focal Adhesion Kinase in Mesenchymal Stromal Cells from Low-Risk Myelodysplastic Syndrome Patients. Front Oncol. 2017;7:164.
Article PubMed PubMed Central Google Scholar
Weickert M-T, et al. Bone marrow stromal cells from MDS and AML patients show increased adipogenic potential with reduced Delta-like-1 expression. Sci Rep. 2021;11:5944.
Article CAS PubMed PubMed Central Google Scholar
Battula, V. L. et al. AML-induced osteogenic differentiation in mesenchymal stromal cells supports leukemia growth. JCI Insight 2, e90036, 90036 (2017).
Beaulieu A, et al. Leptin reverts pro-apoptotic and antiproliferative effects of α-linolenic acids in BCR-ABL positive leukemic cells: involvement of PI3K pathway. PLoS ONE. 2011;6:e25651.
Article CAS PubMed PubMed Central Google Scholar
Dello Spedale Venti, M. et al. Morphological and Immunophenotypical Changes of Human Bone Marrow Adipocytes in Marrow Metastasis and Myelofibrosis. Front. Endocrinol. 13, (2022).
Kim CH, et al. Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b–C9 as homing factors. Leukemia. 2012;26(1):106–16. https://doi.org/10.1038/leu.2011.185.
Article CAS PubMed Google Scholar
Abdelbaset-Ismail A, et al. Bioactive Phospholipids Enhance Migration and Adhesion of Human Leukemic Cells by Inhibiting Heme Oxygenase 1 (HO-1) and Inducible Nitric Oxygenase Synthase (iNOS) in a p38 MAPK-Dependent Manner. Stem Cell Rev Rep. 2019;15(1):139–54. https://doi.org/10.1007/s12015-018-9853-6.
Yokota T, et al. Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. J Clin Invest. 2002;109(10):1303–10. https://doi.org/10.1172/JCI14506.
留言 (0)