Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging

Jagannathan-Bogdan M, Zon LI. Hematopoiesis. Development. 2013;140(12):2463–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sugiyama T, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.

Article  CAS  PubMed  Google Scholar 

Klimczak, A, Kozlowska U Mesenchymal stromal cells and tissue-specific progenitor cells: their role in tissue homeostasis. Stem cells international, 2016. 2016. https://doi.org/10.1155/2016/4285215.

Szade K, et al. Where hematopoietic stem cells live: the bone marrow niche. Antioxid Redox Signal. 2018;29(2):191–204.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kunisaki Y, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sacchetti B, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324–36.

Article  CAS  PubMed  Google Scholar 

Shen B, et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature. 2021;591(7850):438–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calvi L, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425(6960):841–6.

Article  CAS  PubMed  Google Scholar 

Frisch BJ, et al. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia Blood. The J Am Soc Hematol. 2012;119(2):540–50.

CAS  Google Scholar 

Balderman SR, et al. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome Blood. The J Am Soc Hematol. 2016;127(5):616–25.

CAS  Google Scholar 

Georgolopoulos G, et al. Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation. Nat Commun. 2021;12(1):6790.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mansour A, et al. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med. 2012;209(3):537–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adams GB, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006;439(7076):599–603.

Article  CAS  PubMed  Google Scholar 

Yamazaki S, et al. TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood. 2009;113(6):1250–6.

Article  CAS  PubMed  Google Scholar 

Yuan, G., et al., Skeletal stem cells in bone development, homeostasis and disease. Protein & Cell, 2024: p. pwae008. https://doi.org/10.1093/procel/pwae008.

Mendez-Ferrer S, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou BO, et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol. 2017;19(8):891–903.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greenbaum A, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495(7440):227–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pinho S, et al. PDGFRalpha and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013;210(7):1351–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morikawa S, et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med. 2009;206(11):2483–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou BO, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15(2):154–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Omatsu Y, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33(3):387–99.

Article  CAS  PubMed  Google Scholar 

Yue R, et al. Leptin Receptor Promotes Adipogenesis and Reduces Osteogenesis by Regulating Mesenchymal Stromal Cells in Adult Bone Marrow. Cell Stem Cell. 2016;18(6):782–96.

Article  CAS  PubMed  Google Scholar 

Itkin, T., et al., Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature, 2016. https://doi.org/10.1038/nature17624.

Pinho S, et al. Lineage-biased hematopoietic stem cells are regulated by distinct niches. Developmental Cell. 2018;44(5):634-641.e4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pinho S, et al. PDGFRα and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013;210(7):1351–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179(5):1677–82.

Article  CAS  PubMed  Google Scholar 

Taichman RS, Reilly MJ, Emerson SG. Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood. 1996;87(2):518–24.

Article  CAS  PubMed  Google Scholar 

Zhang J, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425(6960):836–41.

Article  CAS  PubMed  Google Scholar 

Visnjic D, et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 2004;103(9):3258–64.

Article  CAS  PubMed  Google Scholar 

Asada N, et al. Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells. Cell Stem Cell. 2013;12(6):737–47.

Article  CAS  PubMed  Google Scholar 

Ferraro F, et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med. 2011;3(104):104ra101.

Article  PubMed  PubMed Central  Google Scholar 

Zhou X, et al. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci USA. 2010;107(29):12919–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vladimer GI, et al. Global survey of the immunomodulatory potential of common drugs. Nat Chem Biol. 2017;13(6):681–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strzelec M, et al. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol. 2023;14:1127704.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jethwa H, Abraham S. Biologic agents in inflammatory arthritis. Br J Gen Pract. 2018;68(669):204–5.

Article  PubMed  PubMed Central  Google Scholar 

Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11(1):3801.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim S, et al. Interplay between immune checkpoint proteins and cellular metabolism. Can Res. 2017;77(6):1245–9.

Article  CAS 

留言 (0)

沒有登入
gif