Mutations in the NUP93, NUP107 and NUP160 genes cause steroid-resistant nephrotic syndrome in Chinese children

Trautmann A, Vivarelli M, Samuel S, et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2020;35(8):1529–61.

Article  PubMed  PubMed Central  Google Scholar 

Downie M L, Gallibois C, Parekh R S, et al. Nephrotic syndrome in infants and children: pathophysiology and management[Z]. England: Taylor & Francis, 2017: 37, 248-258.

Tullus K, Webb H, Bagga A. Management of steroid-resistant nephrotic syndrome in children and adolescents. Lancet Child Adolesc Health. 2018;2(12):880–90.

Article  PubMed  Google Scholar 

Lee JM, Kronbichler A, Shin JI, et al. Current understandings in treating children with steroid-resistant nephrotic syndrome. Pediatr Nephrol (Berlin, West). 2021;36(4):747–61.

Article  Google Scholar 

Shin JI, Kronbichler A, Oh J, et al. Nephrotic syndrome: genetics, mechanism, and therapies. Biomed Res Int. 2018;2018:6215942–6.

Article  Google Scholar 

Sadowski CE, Lovric S, Ashraf S, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2015;26(6):1279–89.

Article  CAS  PubMed  Google Scholar 

Hinkes BG, Mucha B, Vlangos CN, et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics. 2007;119(4):e907–19.

Article  PubMed  Google Scholar 

Preston R, Stuart HM, Lennon R. Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how? Pediatr Nephrol (Berlin, West). 2019;34(2):195–210.

Article  Google Scholar 

Trautmann A, Lipska-Ziętkiewicz BS, Schaefer F. Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the podonet registry. Front Pediatr. 2018;6:200.

Article  PubMed  PubMed Central  Google Scholar 

Lin DH, Hoelz A. The structure of the nuclear pore complex (an update). Ann Rev Biochem. 2019;88(1):725–83.

Article  CAS  PubMed  Google Scholar 

Hampoelz B, Andres-Pons A, Kastritis P, et al. Structure and assembly of the nuclear pore complex. Ann Rev Biophys. 2019;48(1):515–36.

Article  CAS  Google Scholar 

Bierzynska A, Bull K, Miellet S, et al. Exploring the relevance of NUP93 variants in steroid-resistant nephrotic syndrome using next generation sequencing and a fly kidney model. Pediatr Nephrol (Berlin, West). 2022;37(11):2643–56.

Article  Google Scholar 

Bezdíčka M, Štolbová Š, Seeman T, et al. Genetic diagnosis of steroid-resistant nephrotic syndrome in a longitudinal collection of Czech and Slovak patients: a high proportion of causative variants in NUP93. Pediatr Nephrol (Berlin, West). 2018;33(8):1347–63.

Article  Google Scholar 

Rossanti R, Shono A, Miura K, et al. Molecular assay for an intronic variant in NUP93 that causes steroid resistant nephrotic syndrome. J Hum Genet. 2019;64(7):673–9.

Article  CAS  PubMed  Google Scholar 

Sandokji I, Marquez J, Ji W, et al. Identification of novel mutations and phenotype in the steroid resistant nephrotic syndrome gene NUP93: a case report. BMC Nephrol. 2019;20(1):271.

Article  PubMed  PubMed Central  Google Scholar 

Braun DA, Sadowski CE, Kohl S, et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet. 2016;48(4):457–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao B, Chen J, Liao Y, et al. Steroid-resistant nephrotic syndrome in infants caused by a novel compound heterozygous mutation of the NUP93: A CARE case report. Medicine (Baltimore). 2021;100(6):e24627.

Article  PubMed  Google Scholar 

Cason RK, Williams A, Chryst-Stangl M, et al. Collapsing focal segmental glomerulosclerosis in siblings with compound heterozygous variants in NUP93 expand the spectrum of kidney phenotypes associated with nucleoporin gene mutations. Front Pediatr. 2022;10:915174.

Article  PubMed  PubMed Central  Google Scholar 

Acharya R, Upadhyay K. End-stage renal disease in a child with focal segmental glomerulosclerosis associated with a homozygous NUP93 variant. Clin Case Rep. 2021;9(11):e05111.

Hashimoto T, Harita Y, Takizawa K, et al. In Vivo expression of NUP93 and its alteration by NUP93 mutations causing focal segmental glomerulosclerosis. Kidney Int Rep. 2019;4(9):1312–22.

Article  PubMed  PubMed Central  Google Scholar 

Al Riyami M S, Al Alawi I, Al Gaithi B, et al. Genetic analysis and outcomes of Omani children with steroid-resistant nephrotic syndrome. Mol Genet Genomic Med. 2023;11(9):e2201.

Miyake N, Tsukaguchi H, Koshimizu E, et al. Biallelic mutations in nuclear pore complex subunit NUP107 cause early-childhood-onset steroid-resistant nephrotic syndrome. Am J Hum Genet. 2015;97(4):555–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park E, Ahn YH, Kang HG, et al. NUP107 mutations in children with steroid-resistant nephrotic syndrome. Nephrol Dial Transplan. 2017;32(6):1013–7.

CAS  Google Scholar 

Rosti RO, Sotak BN, Bielas SL, et al. Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome. J Med Genet. 2017;54(6):399–403.

Article  CAS  PubMed  Google Scholar 

Braun DA, Lovric S, Schapiro D, et al. Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome. J Clin Investig. 2018;128(10):4313–28.

Article  PubMed  PubMed Central  Google Scholar 

Zhao F, Zhu JY, Richman A, et al. Mutations in NUP160 are implicated in steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2019;30(5):840–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujita A, Tsukaguchi H, Koshimizu E, et al. Homozygous splicing mutation in NUP133 causes Galloway-Mowat syndrome. Ann Neurol. 2018;84(6):814–28.

Article  CAS  PubMed  Google Scholar 

Wang Q, Gu R, Li FW, et al. Steroid-resistant nephrotic syndrome caused by nuclear pore gene NUP133 variation. Clin Genet. 2023;104(2):272–4.

Article  CAS  PubMed  Google Scholar 

Schuller AP, Wojtynek M, Mankus D, et al. The cellular environment shapes the nuclear pore complex architecture. Nature. 2021;598(7882):667–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol. 2017;18(2):73–89.

Article  CAS  PubMed  Google Scholar 

Jamali T, Jamali Y, Mehrbod M, et al. Chapter six - Nuclear Pore Complex: Biochemistry and Biophysics of Nucleocytoplasmic Transport in Health and Disease[M]//Jeon K W. International Review of Cell and Molecular Biology. Academic Press, 2011:233-286.

Ouyang X, Hao X, Liu S, et al. Expression of Nup93 is associated with the proliferation, migration and invasion capacity of cervical cancer cells. Acta Biochimica Et Biophysica Sinica. 2019;51(12):1276–85.

Article  CAS  PubMed  Google Scholar 

Pan L, Song XW, Song JC, et al. Downregulation of NUP93 aggravates hypoxia-induced death of cardiomyocytes in vitro through abnormal regulation of gene transcription. Acta Pharmacol Sin. 2023;44(5):969–83.

Article  CAS  PubMed  Google Scholar 

Nong JS, Zhou X, Liu JQ, et al. Nucleoporin 107 is a prognostic biomarker in hepatocellular carcinoma associated with immune infiltration. Cancer Med. 2023;12(9):10990–1009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren Y, Diao F, Katari S, et al. Functional study of a novel missense single-nucleotide variant of NUP107 in two daughters of Mexican origin with premature ovarian insufficiency. Mol Genet Genom Med. 2018;6(2):276–81.

Article  CAS  Google Scholar 

Tarazon E, Rivera M, Rosello-Lleti E, et al. Heart failure induces significant changes in nuclear pore complex of human cardiomyocytes. Plos One. 2012;7(11):e48957.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang P, Zhao F, Nie X, et al. Knockdown of NUP160 inhibits cell proliferation, induces apoptosis, autophagy and cell migration, and alters the expression and localization of podocyte associated molecules in mouse podocytes. Gene. 2018;664:12–21.

Article  CAS  PubMed  Google Scholar 

Serra G, Antona V, D’Alessandro MM, Maggio MC, Verde V, Corsello G. Novel SCNN1A gene splicing-site mutation causing autosomal recessive pseudohypoaldosteronism type 1 (PHA1) in two Italian patients belonging to the same small town. Ital J Pediatr. 2021;47(1):138.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piro E, Schierz IAM, Antona V, et al. Neonatal hyperinsulinemic hypoglycemia: case report of kabuki syndrome due to a novel KMT2D splicing-site mutation. Ital J Pediatr. 2020;46(1):136.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serra G, Corsello G, Antona V, et al. Autosomal recessive polycystic kidney disease: case report of a newborn with rare PKHD1 mutation, rapid renal enlargement and early fatal outcome. Ital J Pediatr. 2020;46(1):154.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Platt CD, Zaman F, Bainter W, et al. Efficacy and economics of targeted panel versus whole-exome sequencing in 878 patients with suspected primary immunodeficiency. J Allergy Clin Immunol. 2021;147(2):723–6.

留言 (0)

沒有登入
gif