Epidemiology, pathogenesis, immune evasion mechanism and vaccine development of porcine Deltacoronavirus

Agol VI (2012) Cytopathic effects: virus-modulated manifestations of innate immunity? Trends Microbiol. 20(12):570–576. https://doi.org/10.1016/j.tim.2012.09.003

Agosto LM, Uchil PD, Mothes W (2015) HIV cell-to-cell transmission: effects on pathogenesis and antiretroviral therapy. Trends Microbiol 23(5):289–295. https://doi.org/10.1016/j.tim.2015.02.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bahoussi AN, Wang PH, Shah PT, Bu H, Wu C, Xing L (2022) Evolutionary plasticity of zoonotic porcine Deltacoronavirus (PDCoV): genetic characteristics and geographic distribution. BMC Vet Res 18(1):444. https://doi.org/10.1186/s12917-022-03554-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnett KC, Li S, Liang K, Ting JP (2023) A 360 degrees view of the inflammasome: mechanisms of activation, cell death, and diseases. Cell 186(11):2288–2312. https://doi.org/10.1016/j.cell.2023.04.025

Article  CAS  PubMed  Google Scholar 

Belouzard S, Millet JK, Licitra BN, Whittaker GR (2012) Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4(6):1011–1033. https://doi.org/10.3390/v4061011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benko S, Kovacs EG, Hezel F, Kufer TA (2017) NLRC5 functions beyond MHC I regulation-what do we know so far? Front Immunol 8:150. https://doi.org/10.3389/fimmu.2017.00150

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bjustrom-Kraft J, Woodard K, Giménez-Lirola L, Setness B, Ji J, Lasley P, Nelson E, Zhang JQ, Baum D, Gauger P, Main R, Zimmerman J (2018) Serum and mammary secretion antibody responses in porcine epidemic diarrhea-immune gilts following porcine epidemic diarrhea vaccination. J Swine Health Prod 26(1):34–40 ://WOS:000419265700006

Article  Google Scholar 

Boley PA, Alhamo MA, Lossie G, Yadav KK, Vasquez-Lee M, Saif LJ, Kenney SP (2020) Porcine Deltacoronavirus infection and transmission in Poultry, United States. Emerg Infect Dis 26(2):255–264. https://doi.org/10.3201/eid2602.190346

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272(5258):60–66. https://doi.org/10.1126/science.272.5258.60

Article  CAS  PubMed  Google Scholar 

Chang KO, George DW (2007) Bile acids promote the expression of hepatitis C virus in replicon-harboring cells. J Virol 81(18):9633–9640. https://doi.org/10.1128/JVI.00795-07

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang KO, Sosnovtsev SV, Belliot G, Kim Y, Saif LJ, Green KY (2004) Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc Natl Acad Sci U S A 101(23):8733–8738. https://doi.org/10.1073/pnas.0401126101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charley B, Riffault S, Van Reeth K (2006) Porcine innate and adaptative immune responses to influenza and coronavirus infections. Ann N Y Acad Sci 1081(1):130–136. https://doi.org/10.1196/annals.1373.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chattha KS, Roth JA, Saif LJ (2015) Strategies for design and application of enteric viral vaccines. Annu Rev Anim Biosci 3:375–395. https://doi.org/10.1146/annurev-animal-022114-111038

Article  CAS  PubMed  Google Scholar 

Chen Q, Gauger P, Stafne M, Thomas J, Arruda P, Burrough E, Madson D, Brodie J, Magstadt D, Derscheid R, Welch M, Zhang JQ (2015) Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets. Virology 482:51–59. https://doi.org/10.1016/j.virol.2015.03.024

Article  CAS  PubMed  Google Scholar 

Chen ZX, Bishop KS, Tanambell H, Buchanan P, Smith C, Quek SY (2019) Characterization of the bioactivities of an ethanol extract and some of its constituents from the New Zealand native mushroom. Food Funct 10(10):6633–6643. https://doi.org/10.1039/c9fo01672d

Article  CAS  PubMed  Google Scholar 

Cifuentes-Munoz N, Najjar E, F., Dutch RE (2020) Viral cell-to-cell spread: conventional and non-conventional ways. Adv Virus Res 108:85–125. https://doi.org/10.1016/bs.aivir.2020.09.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clarke P, Tyler KL (2009) Apoptosis in animal models of virus-induced disease. Nat Rev Microbiol 7(2):144–155. https://doi.org/10.1038/nrmicro2071

Article  CAS  PubMed  PubMed Central  Google Scholar 

Correia L, Podevin P, Borderie D, Verthier N, Montet JC, Feldmann G, Poupon R, Weill B, Calmus Y (2001) Effects of bile acids on the humoral immune response: a mechanistic approach. Life Sci 69(20):2337–2348. https://doi.org/10.1016/s0024-3205(01)01321-2

Article  CAS  PubMed  Google Scholar 

Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17(3):181–192. https://doi.org/10.1038/s41579-018-0118-9

Article  CAS  PubMed  Google Scholar 

Delmas B, Gelfi J, L’Haridon R, Vogel LK, Sjostrom H, Noren O, Laude H (1992) Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357(6377):417–420. https://doi.org/10.1038/357417a0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong N, Fang L, Yang H, Liu H, Du T, Fang P, Wang D, Chen H, Xiao S (2016) Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014. Vet Microbiol 196:98–106. https://doi.org/10.1016/j.vetmic.2016.10.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348(20):1967–1976. https://doi.org/10.1056/NEJMoa030747

Article  CAS  PubMed  Google Scholar 

Duan C, Liu Y, Hao Z, Wang J (2021) Ergosterol peroxide suppresses porcine deltacoronavirus (PDCoV)-induced autophagy to inhibit virus replication via p38 signaling pathway. Vet Microbiol 257:109068. https://doi.org/10.1016/j.vetmic.2021.109068

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan C, Ge X, Wang J, Wei Z, Feng WH, Wang J (2021) Ergosterol peroxide exhibits antiviral and immunomodulatory abilities against porcine deltacoronavirus (PDCoV) via suppression of NF-kappaB and p38/MAPK signaling pathways in vitro. Int Immunopharmacol 93:107317. https://doi.org/10.1016/j.intimp.2020.107317

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan C, Wang J, Liu Y, Zhang J, Si J, Hao Z, Wang J (2021c) Antiviral effects of ergosterol peroxide in a pig model of porcine deltacoronavirus (PDCoV) infection involves modulation of apoptosis and tight junction in the small intestine. Vet Res 52(1):86. https://doi.org/10.1186/s13567-021-00955-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elhazmi A, Al-Tawfiq JA, Sallam H, Al-Omari A, Alhumaid S, Mady A, Al Mutair A (2021) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) coinfection: a unique case series. Travel Med Infect Dis 41. https://doi.org/10.1016/j.tmaid.2021.102026

Fang P, Fang L, Xia S, Ren J, Zhang J, Bai D, Zhou Y, Peng G, Zhao S, Xiao S (2020) Porcine Deltacoronavirus accessory protein NS7a antagonizes IFN-beta production by competing with TRAF3 and IRF3 for binding to IKKepsilon. Front Cell Infect Microbiol 10:257. https://doi.org/10.3389/fcimb.2020.00257

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang P, Hong Y, Xia S, Zhang J, Ren J, Zhou Y, Fang L, Xiao S (2021) Porcine deltacoronavirus nsp10 antagonizes interferon-beta production independently of its zinc finger domains. Virology 559:46–56. https://doi.org/10.1016/j.virol.2021.03.015

Article  CAS  PubMed  Google Scholar 

Fang P, Zhang J, Zhang H, Xia S, Ren J, Tian L, Bai D, Fang L, Xiao S (2021) Porcine Deltacoronavirus enters porcine IPI-2I intestinal epithelial cells via Macropinocytosis and clathrin-mediated endocytosis dependent on pH and Dynamin. J Virol 95(24):e0134521. https://doi.org/10.1128/JVI.01345-21

Article  PubMed  Google Scholar 

Fang P, Tian L, Zhang H, Xia S, Ding T, Zhu X, Zhang J, Ren J, Fang L, Xiao S (2022) Induction and modulation of the unfolded protein response during porcine deltacoronavirus infection. Vet Microbiol 271:109494. https://doi.org/10.1016/j.vetmic.2022.109494

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fung TS, Liu DX (2014) Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol 5:296. https://doi.org/10.3389/fmicb.2014.00296

Article  PubMed  PubMed Central  Google Scholar 

Gao P, Zhou L, Wu J, Weng W, Wang H, Ye M, Qu Y, Hao Y, Zhang Y, Ge X, Guo X, Han J, Yang H (2023) Riding apoptotic bodies for cell-cell transmission by African swine fever virus. Proc Natl Acad Sci U S A 120(48):e2309506120. https://doi.org/10.1073/pnas.2309506120

Article  CAS 

留言 (0)

沒有登入
gif