The role of SWI/SNF complexes in digestive system neoplasms

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021. https://doi.org/10.3322/caac.21660.

Article  PubMed  Google Scholar 

Zheng RS, Zhang SW, Sun KX, et al. Cancer statistics in China, 2016. Zhonghua Zhong Liu Za Zhi. 2023. https://doi.org/10.3760/cma.j.cn112152-20220922-00647.

Article  PubMed  Google Scholar 

Wei W, Zeng H, Zheng R, et al. Cancer registration in China and its role in cancer prevention and control. Lancet Oncol. 2020. https://doi.org/10.1016/S1470-2045(20)30073-5.

Article  PubMed  PubMed Central  Google Scholar 

Cao W, Chen H-D, Yu Y-W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 2021. https://doi.org/10.1097/CM9.0000000000001474.

Article  PubMed  Google Scholar 

Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022. https://doi.org/10.1097/CM9.0000000000002108.

Article  PubMed  PubMed Central  Google Scholar 

Nagtegaal ID, Odze RD, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020. https://doi.org/10.1111/his.13975.

Article  PubMed  PubMed Central  Google Scholar 

Jf F. WHO Classification of digestive tumors: the fourth edition. Ann Pathol. 2011. https://doi.org/10.1016/j.annpat.2011.08.001.

Article  Google Scholar 

Kang MA, Lee J-S. A newly assigned role of CTCF in cellular response to broken DNAs. Biomolecules. 2021. https://doi.org/10.3390/biom11030363.

Article  PubMed  PubMed Central  Google Scholar 

Ribeiro-Silva C, Vermeulen W, Lans H. SWI/SNF: Complex complexes in genome stability and cancer. DNA Repair. 2019. https://doi.org/10.1016/j.dnarep.2019.03.007.

Article  PubMed  Google Scholar 

Moison C, Chagraoui J, Caron M-C, et al. Zinc finger protein E4F1 cooperates with PARP-1 and BRG1 to promote DNA double-strand break repair. Proc Natl Acad Sci U S A. 2021. https://doi.org/10.1073/pnas.2019408118.

Article  PubMed  PubMed Central  Google Scholar 

Vaicekauskaitė I, Sabaliauskaitė R, Lazutka JR, et al. The emerging role of chromatin remodeling complexes in ovarian cancer. IJMS. 2022. https://doi.org/10.3390/ijms232213670.

Article  PubMed  PubMed Central  Google Scholar 

Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011. https://doi.org/10.1038/cr.2011.32.

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Côté J, Xue Y, et al. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 1996;15:5370–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pulice JL, Kadoch C. Composition and function of Mammalian SWI/SNF chromatin remodeling complexes in human disease. Cold Spring Harb Symp Quant Biol. 2016. https://doi.org/10.1101/sqb.2016.81.031021.

Article  PubMed  Google Scholar 

Mittal P, Roberts CWM. The SWI/SNF complex in cancer—biology, biomarkers and therapy. Nat Rev Clin Oncol. 2020. https://doi.org/10.1038/s41571-020-0357-3.

Article  PubMed  PubMed Central  Google Scholar 

Romero OA, Sanchez-Cespedes M. The SWI/SNF genetic blockade: effects in cell differentiation, cancer and developmental diseases. Oncogene. 2014. https://doi.org/10.1038/onc.2013.227.

Article  PubMed  Google Scholar 

Mashtalir N, D’Avino AR, Michel BC, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018. https://doi.org/10.1016/j.cell.2018.09.032.

Article  PubMed  PubMed Central  Google Scholar 

Sima X, He J, Peng J, et al. The genetic alteration spectrum of the SWI/SNF complex: The oncogenic roles of BRD9 and ACTL6A. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0222305.

Article  PubMed  PubMed Central  Google Scholar 

Drage MG, Tippayawong M, Agoston AT, et al. Morphological features and prognostic significance of ARID1A-deficient esophageal adenocarcinomas. Arch Pathol Lab Med. 2017. https://doi.org/10.5858/arpa.2016-0318-OA.

Article  PubMed  Google Scholar 

Lowenthal BM, Nason KS, Pennathur A, et al. Loss of ARID1A expression is associated with DNA mismatch repair protein deficiency and favorable prognosis in advanced stage surgically resected esophageal adenocarcinoma. Hum Pathol. 2019. https://doi.org/10.1016/j.humpath.2019.09.004.

Article  PubMed  Google Scholar 

Schallenberg S, Bork J, Essakly A, et al. Loss of the SWI/SNF-ATPase subunit members SMARCF1 (ARID1A), SMARCA2 (BRM), SMARCA4 (BRG1) and SMARCB1 (INI1) in oesophageal adenocarcinoma. BMC Cancer. 2020. https://doi.org/10.1186/s12885-019-6425-3.

Article  PubMed  PubMed Central  Google Scholar 

Zhou Z, Huang D, Yang S, et al. Clinicopathological significance, related molecular changes and tumor immune response analysis of the abnormal SWI/SNF complex subunit PBRM1 in gastric adenocarcinoma. Pathol Oncol Res. 2022. https://doi.org/10.3389/pore.2022.1610479.

Article  PubMed  PubMed Central  Google Scholar 

Glückstein M-I, Dintner S, Arndt TT, et al. Comprehensive immunohistochemical study of the SWI/SNF complex expression status in gastric cancer reveals an adverse prognosis of SWI/SNF deficiency in genomically stable gastric carcinomas. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13153894.

Article  PubMed  Google Scholar 

Zhu YP, Sheng LL, Wu J, et al. Loss of ARID1A expression is associated with poor prognosis in patients with gastric cancer. Hum Pathol. 2018. https://doi.org/10.1016/j.humpath.2018.04.003.

Article  PubMed  Google Scholar 

Shih-Chiang Huang, Chen K-H, Ng K-F, et al. Dedifferentiation-like tubular and solid carcinoma of the stomach shows phenotypic divergence and association with deficient SWI/SNF complex. Virchows Arch. 2022. https://doi.org/10.1007/s00428-022-03288-6

Tsuruta S, Kohashi K, Yamada Y, et al. Solid-type poorly differentiated adenocarcinoma of the stomach: Deficiency of mismatch repair and SWI/SNF complex. Cancer Sci. 2020. https://doi.org/10.1111/cas.14301.

Article  PubMed  PubMed Central  Google Scholar 

Huang S, Ng K, Yeh T, et al. The clinicopathological and molecular analysis of gastric cancer with altered SMARCA4 expression. Histopathology. 2020. https://doi.org/10.1111/his.14117.

Article  PubMed  PubMed Central  Google Scholar 

Huang S-C, Ng K-F, Chang IY-F, et al. The clinicopathological significance of SWI/SNF alterations in gastric cancer is associated with the molecular subtypes. PLoS One. 2021. https://doi.org/10.1371/journal.pone.0245356

Zhang Z, Li Q, Sun S, et al. Clinicopathological and prognostic significance of SWI/SNF complex subunits in undifferentiated gastric carcinoma. World J Surg Onc. 2022. https://doi.org/10.1186/s12957-022-02847-0.

Article  Google Scholar 

Sasaki T, Kohashi K, Kawatoko S, et al. Tumor progression by epithelial-mesenchymal transition in ARID1A- and SMARCA4-aberrant solid-type poorly differentiated gastric adenocarcinoma. Virchows Arch. 2022. https://doi.org/10.1007/s00428-021-03261-9.

Article  PubMed  Google Scholar 

Mochizuki K, Kawai M, Odate T, et al. SMARCB1/INI1 is diagnostically useful in distinguishing α-fetoprotein-producing gastric carcinoma from hepatocellular carcinoma. Anticancer Res. 2018;38:6865.

Article  CAS  PubMed  Google Scholar 

Sen M, Wang X, Hamdan FH, et al. ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells. Clin Epigenetics. 2019. https://doi.org/10.1186/s13148-019-0690-5.

Article  PubMed  PubMed Central  Google Scholar 

Yang Z, Huang D, Meng M, et al. BAF53A drives colorectal cancer development by regulating DUSP5-mediated ERK phosphorylation. Cell Death Dis. 2022. https://doi.org/10.1038/s41419-022-05499-w.

Article  PubMed  PubMed Central  Google Scholar 

Ke S-B, Qiu H, Chen J-M, et al. MicroRNA-202-5p functions as a tumor suppressor in colorectal carcinoma by directly targeting SMARCC1. Gene. 2018. https://doi.org/10.1016/j.gene.2018.08.064.

Article  PubMed  Google Scholar 

Melloul S, Mosnier J-F, Masliah-Planchon J, et al. Loss of SMARCB1 expression in colon carcinoma. CBM. 2020. https://doi.org/10.3233/CBM-190287.

Article  Google Scholar 

Wang J, Andrici J, Sioson L, et al. Loss of INI1 expression in colorectal carcinoma is associated with high tumor grade, poor survival, BRAFV600E mutation, and mismatch repair deficiency. Hum Pathol. 2016. https://doi.org/10.1016/j.humpath.2016.04.018.

Article  PubMed  PubMed Central  Google Scholar 

Villatoro TM, Ma C, Pai RK. Switch/sucrose nonfermenting nucleosome complex–deficient colorectal carcinomas have distinct clinicopathologic features. Hum Pathol. 2020. https://doi.org/10.1016/j.humpath.2020.03.009.

Article  PubMed  Google Scholar 

Ahadi MS, Fuchs TL, Clarkson A, et al. SWI/SNF complex (SMARCA4, SMARCA2, INI1/SMARCB1) deficient colorectal carcinomas are strongly associated with microsatellite instability: An incidence study in 4508 colorectal carcinomas. Histopathology. 2022. https://doi.org/10.1111/his.14612.

Article  PubMed 

留言 (0)

沒有登入
gif