Identification of small molecule inhibitors against Lin28/let-7 to suppress tumor progression and its alleviation role in LIN28-dependent glucose metabolism

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023. https://doi.org/10.3322/caac.21763.

Article  PubMed  Google Scholar 

Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P. Cancer incidence estimates for 2022 & projection for 2025: result from National Cancer Registry Programme, India. Indian J Med Res. 2022. https://doi.org/10.4103/ijmr.ijmr_1821_22.

Article  PubMed  PubMed Central  Google Scholar 

Zhou J, Ng SB, Chng WJ. LIN28/LIN28B: an emerging oncogenic driver in cancer stem cells. Int J Biochem Cell Biol. 2013. https://doi.org/10.1016/j.biocel.2013.02.006.

Article  PubMed  Google Scholar 

Mizuno R, Kawada K, Sakai Y. The molecular basis and therapeutic potential of Let-7 MicroRNAs against Colorectal Cancer. Can J Gastroenterol Hepatol. 2018. https://doi.org/10.1155/2018/5769591.

Article  PubMed  PubMed Central  Google Scholar 

Roos M, Pradère U, Ngondo RP, et al. A small-molecule inhibitor of Lin28. ACS Chem Biol. 2016. https://doi.org/10.1021/acschembio.6b00232.

Article  PubMed  Google Scholar 

Wang L, Rowe RG, Jaimes A, et al. Small-molecule inhibitors disrupt let-7 Oligouridylation and Release the selective blockade of let-7 Processing by LIN28. Cell Rep. 2018. https://doi.org/10.1016/j.celrep.2018.04.116.

Article  PubMed  PubMed Central  Google Scholar 

Lightfoot HL, Miska EA, Balasubramanian S. Identification of small molecule inhibitors of the Lin28- mediated blockage of pre-let-7 g processing. Org Biomol Chem. 2016. https://doi.org/10.1039/c6ob01945e.

Article  PubMed  PubMed Central  Google Scholar 

Borgelt L, Li F, Hommen P, et al. Trisubstituted pyrrolinones as small-molecule inhibitors disrupting the Protein-RNA Interaction of LIN28 and Let-7. ACS Med Chem Lett. 2021. https://doi.org/10.1021/acsmedchemlett.0c00546.

Article  PubMed  PubMed Central  Google Scholar 

Lorenz DA, Kaur T, Kerk SA, Gallagher EE, Sandoval J, Garner AL. Expansion of cat-ELCCA for the Discovery of small molecule inhibitors of the Pre-let-7-Lin28 RNA-Protein Interaction. ACS Med Chem Lett. 2018. https://doi.org/10.1021/acsmedchemlett.8b00126.

Article  PubMed  PubMed Central  Google Scholar 

Goebel GL, Hohnen L, Borgelt L, et al. Small molecules with tetrahydroquinoline-containing Povarov scaffolds as inhibitors disrupting the Protein-RNA interaction of LIN28-let-7. Eur J Med Chem. 2022. https://doi.org/10.1016/j.ejmech.2021.114014.

Article  PubMed  Google Scholar 

Lim D, Byun WG, Park SB. Restoring Let-7 microRNA Biogenesis using a small-molecule inhibitor of the Protein-RNA Interaction. ACS Med Chem Lett. 2018. https://doi.org/10.1021/acsmedchemlett.8b00323.

Article  PubMed  PubMed Central  Google Scholar 

Hommen P, Hwang J, Huang F, Borgelt L, Hohnen L, Wu P. Chromenopyrazole-peptide conjugates as small-molecule based inhibitors disrupting the Protein-RNA Interaction of LIN28-let-7. ChemBioChem. 2023. https://doi.org/10.1002/cbic.202300376.

Article  PubMed  Google Scholar 

Borgelt L, Huang F, Hohnen L, et al. Spirocyclic chromenopyrazole inhibitors disrupting the Interaction between the RNA-Binding protein LIN28 and Let-7. ChemBioChem. 2023. https://doi.org/10.1002/cbic.202300168.

Article  PubMed  Google Scholar 

Zhang Q, Shi M, Zheng R, Han H, Zhang X, Lin F. C1632 inhibits ovarian cancer cell growth and migration by inhibiting LIN28B/let-7/FAK signaling pathway and FAK phosphorylation. Eur J Pharmacol. 2023. https://doi.org/10.1016/j.ejphar.2023.175935.

Article  PubMed  Google Scholar 

Tsialikas J, Romer-Seibert J. LIN28: roles and regulation in development and beyond. Development; 2015. 2397 – 404.

Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 pathway in Cancer. Front Genet. 2017. https://doi.org/10.3389/fgene.2017.00031.

Article  PubMed  PubMed Central  Google Scholar 

Nguyen LH, Zhu H. Lin28 and let-7 in cell metabolism and cancer. Transl Pediatr. 2015. https://doi.org/10.3978/j.issn.2224-4336.2015.01.05.

Article  PubMed  PubMed Central  Google Scholar 

Wu K, Ahmad T, Eri R. LIN28A: a multifunctional versatile molecule with future therapeutic potential. World J Biol Chem. 2022. https://doi.org/10.4331/wjbc.v13.i2.35.

Article  PubMed  PubMed Central  Google Scholar 

Lekka E, Civenni G, Berk C, Schmidli S, Kokanovic A, Catapano C, Hall J. Lin28 Inhibition by a Small Molecule Led to Insulin Resistance and Increased Ketogenesis. Swiss Academy of Pharmaceutical Sciences. 2019. https://www.saphw.ch/sites/default/files/attachments/lekka-31_0.pdf. Accessed 2 Sep 2022.

Zhu H, Shyh-Chang N, Segrè AV, et al. The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011. https://doi.org/10.1016/j.cell.2011.08.033.

Article  PubMed  PubMed Central  Google Scholar 

McDaniel K, Hall C, Sato K, et al. Lin28 and let-7: roles and regulation in liver diseases. Am J Physiol Gastrointest Liver Physiol. 2016. https://doi.org/10.1152/ajpgi.00080.2016.

Article  PubMed  PubMed Central  Google Scholar 

Leonardini A, Laviola L, Perrini S, Natalicchio A, Giorgino F. Cross-talk between PPARgamma and Insulin Signaling and modulation of insulin sensitivity. PPAR Res. 2009. https://doi.org/10.1155/2009/818945.

Article  PubMed  Google Scholar 

Wang L, Nam Y, Lee AK, Yu C, Roth K, Chen C, Ransey EM, Sliz P. LIN28 zinc Knuckle Domain is required and sufficient to Induce let-7 Oligouridylation. Cell Rep. 2017. https://doi.org/10.1016/j.celrep.2017.02.044.

Article  PubMed  PubMed Central  Google Scholar 

Artis DR, Lin JJ, Zhang C, et al. Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Proc Natl Acad Sci U S A. 2009. https://doi.org/10.1073/pnas.0811325106.

Article  PubMed  Google Scholar 

Schrödinger Suite 2017-4. Protein Preparation Wizard, Epik, Schrödinger, LLC, New York, NY,2017.

Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS ALL atoms force field on conformation energetics and properties of organic liquids. J Am Chem Soc. 1996. https://doi.org/10.1021/ja9621760.

Article  Google Scholar 

Radaeva M, Ho CH, Xie N, Zhang S, Lee J, Liu L, Lallous N, Cherkasov A, Dong X. Discovery of Novel Lin28 inhibitors to suppress Cancer Cell Stemness. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14225687.

Article  PubMed  Google Scholar 

Schrödinger. Release 2021-3: LigPrep. New York, NY: Schrödinger, LLC; 2021.

Google Scholar 

Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004. https://doi.org/10.1021/jm030644s.

Article  PubMed  Google Scholar 

Maiti P, Nand M, Mathpal S, et al. Potent multi-target natural inhibitors against SARS-CoV-2 from medicinal plants of the Himalaya: a discovery from hybrid machine learning, chemoinformatics, and simulation assisted screening. J Biomol Struct Dyn. 2023. https://doi.org/10.1080/07391102.2023.2257333.

Article  PubMed  Google Scholar 

Mathpal S, Joshi T, Sharma P, et al. In silico screening of chalcone derivatives as promising EGFR-TK inhibitors for the clinical treatment of cancer. 3 Biotech. 2024. https://doi.org/10.1007/s13205-023-03858-8.

Article  PubMed  Google Scholar 

Schrödinger Release 2022: Maestro-desmond interoperability tools, Schrödinger, New York, NY, 2022.

Banks JL, Beard HS, Cao Y, et al. Integrated modeling program, Applied Chemical Theory (IMPACT). J Comput Chem. 2005. https://doi.org/10.1002/jcc.20292.

Article  PubMed  PubMed Central  Google Scholar 

Toukmaji AY, Board JA Jr. Ewald summation techniques in perspective: a survey. Comput Phys Commun. 1996. https://doi.org/10.1016/0010-4655(96)00016-1.

Article  Google Scholar 

Martyma GJ, Klein ML, Tuckerman M. Nose-Hoover chains; the canonical ensemble via continuous dynamics. J Chem Phys. 1992. https://doi.org/10.1063/1.463940.

Article  Google Scholar 

Schrödinger Release 2012-3. Prime, Schrödinger, LLC, New York, NY, 2021.

Schrödinger. Release 2021-3: QikProp, Schrödinger, LLC, New York, NY, 2021.

Schrödinger Release 2021-3. Jaguar, Schrödinger, LLC, New York, NY, 2021.

Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988. https://doi.org/10.1103/PhysRevB.37.785.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif