YWHAG promotes colorectal cancer progression by regulating the CTTN-Wnt/β-catenin signaling axis

Siegel RL, Miller KD, Jemal A. Cancer statistics 2020. CA: Cancer J Clin. 2020;70(1):30.

Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71(3):209–49.

PubMed  Google Scholar 

Mackintosh C. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J. 2004;381(Pt 2):329–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morrison DK. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 2009;19(1):16–23.

Article  CAS  PubMed  Google Scholar 

Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev. 2000;14(9):1027–47.

Article  CAS  PubMed  Google Scholar 

Muslin AJ, Tanner JW, Allen PM, Shaw AS. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996;84(6):889–97.

Article  CAS  PubMed  Google Scholar 

Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, et al. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell. 1997;91(7):961–71.

Article  CAS  PubMed  Google Scholar 

Aitken A, Baxter H, Dubois T, Clokie S, Mackie S, Mitchell K, et al. Specificity of 14-3-3 isoform dimer interactions and phosphorylation. Biochem Soc Trans. 2002;30(4):351–60.

Article  CAS  PubMed  Google Scholar 

Fan X, Cui L, Zeng Y, Song W, Gaur U, Yang M. 14-3-3 proteins are on the crossroads of cancer, aging, and age-related neurodegenerative disease. Int J Mol Sci. 2019;20(14):3518.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan T, Li R, Todd NW, Qiu Q, Fang H-B, Wang H, et al. Up-regulation of 14-3-3zeta in lung cancer and its implication as prognostic and therapeutic target. Cancer Res. 2007;67(16):7901–6.

Article  CAS  PubMed  Google Scholar 

Maxwell SA, Cherry EM, Bayless KJ. Akt, 14-3-3ζ, and vimentin mediate a drug-resistant invasive phenotype in diffuse large B-cell lymphoma. Leuk Lymphoma. 2011;52(5):849–64.

Article  CAS  PubMed  Google Scholar 

Maxwell SA, Li Z, Jaya D, Ballard S, Ferrell J, Fu H. 14-3-3zeta mediates resistance of diffuse large B cell lymphoma to an anthracycline-based chemotherapeutic regimen. J Biol Chem. 2009;284(33):22379–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teo Z, Sng MK, Chan JSK, Lim MMK, Li Y, Li L, et al. Elevation of adenylate energy charge by angiopoietin-like 4 enhances epithelial-mesenchymal transition by inducing 14-3-3γ expression. Oncogene. 2017;36(46):6408–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JXT, Tan WR, Low ZS, Lee JQ, Chua D, Yeo WDC, et al. YWHAG deficiency disrupts the EMT-associated network to induce oxidative cell death and prevent metastasis. Adv Sci (Weinh). 2023;10(31): e2301714.

Article  PubMed  Google Scholar 

Zhang J, Cui K, Huang L, Yang F, Sun S, Bian Z, et al. SLCO4A1–AS1 promotes colorectal tumourigenesis by regulating Cdk2/c-Myc signalling. J Biomed Sci. 2022;29(1):4.

Article  PubMed  PubMed Central  Google Scholar 

Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7(344):re8.

Article  PubMed  PubMed Central  Google Scholar 

Moon SJ, Choi HJ, Kye YH, Jeong GY, Kim HY, Myung JK, et al. CTTN overexpression confers cancer stem cell-like properties and trastuzumab resistance via DKK-1/WNT signaling in HER2 positive breast cancer. Cancers (Basel). 2023;15(4):1168.

Article  CAS  PubMed  Google Scholar 

Sekiba K, Otsuka M, Funato K, Miyakawa Y, Tanaka E, Seimiya T, et al. HBx-induced degradation of Smc5/6 complex impairs homologous recombination-mediated repair of damaged DNA. J Hepatol. 2022;76(1):53–62.

Article  CAS  PubMed  Google Scholar 

Radhakrishnan VM, Martinez JD. 14-3-3gamma induces oncogenic transformation by stimulating MAP kinase and PI3K signaling. PLoS ONE. 2010;5(7):e11433.

Article  PubMed  PubMed Central  Google Scholar 

Ko B-S, Lai IR, Chang T-C, Liu T-A, Chen S-C, Wang J, et al. Involvement of 14-3-3γ overexpression in extrahepatic metastasis of hepatocellular carcinoma. Hum Pathol. 2011;42(1):129–35.

Article  CAS  PubMed  Google Scholar 

Lee Y-S, Lee JK, Bae Y, Lee B-S, Kim E, Cho C-H, et al. Suppression of 14-3-3γ-mediated surface expression of ANO1 inhibits cancer progression of glioblastoma cells. Sci Rep. 2016;6:26413.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu J, Wang J, He Z, Chen P, Jiang X, Chen Y, et al. LncRNA CERS6-AS1 promotes proliferation and metastasis through the upregulation of YWHAG and activation of ERK signaling in pancreatic cancer. Cell Death Dis. 2021;12(7):648.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang P, Deng Y, Fu X. MiR-509-5p suppresses the proliferation, migration, and invasion of non-small cell lung cancer by targeting YWHAG. Biochem Biophys Res Commun. 2017;482(4):935–41.

Article  CAS  PubMed  Google Scholar 

Garan LAW, Xiao Y, Lin WC. 14-3-3tau drives estrogen receptor loss via ERalpha36 induction and GATA3 inhibition in breast cancer. Proc Natl Acad Sci USA. 2022;119(43):e2209211119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liou JY, Ghelani D, Yeh S, Wu KK. Nonsteroidal anti-inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 14-3-3epsilon. Cancer Res. 2007;67(7):3185–91.

Article  CAS  PubMed  Google Scholar 

Ding J, Zhu YT, Yang L, Tang J, Wang YY, Chen Y, et al. 14-3-3zeta is involved in the anticancer effect of metformin in colorectal carcinoma. Carcinogenesis. 2018;39(3):493–502.

Article  CAS  PubMed  Google Scholar 

Hiraoka E, Mimae T, Ito M, Kadoya T, Miyata Y, Ito A, et al. Breast cancer cell motility is promoted by 14-3-3gamma. Breast Cancer. 2019;26(5):581–93.

Article  PubMed  Google Scholar 

Ren XL, Qiao YD, Li JY, Li XM, Zhang D, Zhang XJ, et al. Cortactin recruits FMNL2 to promote actin polymerization and endosome motility in invadopodia formation. Cancer Lett. 2018;419:245–56.

Article  CAS  PubMed  Google Scholar 

Li W, Lei T, Song X, Deng C, Lu J, Zhang W, et al. CBLC inhibits the proliferation and metastasis of breast cancer cells via ubiquitination and degradation of CTTN. J Recept Signal Transduct Res. 2022;42(6):588–98.

Article  CAS  PubMed  Google Scholar 

Jing X, Wu H, Ji X, Wu H, Shi M, Zhao R. Cortactin promotes cell migration and invasion through upregulation of the dedicator of cytokinesis 1 expression in human colorectal cancer. Oncol Rep. 2016;36(4):1946–52.

Article  CAS  PubMed  Google Scholar 

Wu H, Cheng X, Ji X, He Y, Jing X, Wu H, et al. Cortactin contributes to the tumorigenicity of colorectal cancer by promoting cell proliferation. Oncol Rep. 2016;36(6):3497–503.

Article  CAS  PubMed  Google Scholar 

Wei C-Y, Zhu M-X, Yang Y-W, Zhang P-F, Yang X, Peng R, et al. Downregulation of RNF128 activates Wnt/β-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma. J Hematol Oncol. 2019;12(1):21.

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3.

Article  PubMed  PubMed Central  Google Scholar 

Tang Q, Chen J, Di Z, Yuan W, Zhou Z, Liu Z, et al. TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer. J Exp Clin Cancer Res. 2020;39(1):232.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif