Potential role of immune cell therapy in gynecological cancer and future promises: a comprehensive review

Decker WK, da Silva RF, Sanabria MH, Angelo LS, Guimarães F, Burt BM, et al. Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol. 2017;8:829.

Article  PubMed  PubMed Central  Google Scholar 

Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3:250–61.

Article  CAS  Google Scholar 

Halliday GM, Patel A, Hunt MJ, Tefany FJ, Barnetson RS. Spontaneous regression of human melanoma/nonmelanoma skin cancer: association with infiltrating CD4+ T cells. World J Surg. 1995;19:352–8.

Article  CAS  PubMed  Google Scholar 

Rosenberg SA. Raising the bar: the curative potential of human cancer immunotherapy. Sci Transl Med. 2012;4:127ps8.

Article  PubMed  PubMed Central  Google Scholar 

Nikanjam M, Mullen J, Yacoub C, Daniels GA. Combination high-dose interleukin-2 and nivolumab for programmed cell death-1 refractory metastatic melanoma: a case series. J Med Case Rep. 2022;16(1):337.

Article  PubMed  PubMed Central  Google Scholar 

Lynam S, Lugade AA, Odunsi K. Immunotherapy for gynecologic cancer: current applications and future directions. Clin Obstet Gynecol. 2020;63(1):48–63.

Article  PubMed  PubMed Central  Google Scholar 

Quezada SA, Peggs KS, Simpson TR, Allison JP. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev. 2011;241(1):104–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang G, Wu Q, Li B. Evaluation of immunotherapy efficacy in gynecologic cancer. Front Immunol. 2023;14:1061761.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishio H, Iwata T, Aoki D. Current status of cancer immunotherapy for gynecologic malignancies. Jpn J Clin Oncol. 2021;51(2):167–72.

Article  PubMed  Google Scholar 

Lorusso D, Ceni V, Daniele G, Pietragalla A, Salutari V, Muratore M, et al. Immunotherapy in gynecological cancers. Explor Target Antitumor Ther. 2021;2(1):48–64.

CAS  PubMed  PubMed Central  Google Scholar 

Ventriglia J, Paciolla I, Pisano C, Cecere SC, Di Napoli M, Tambaro R, et al. Immunotherapy in ovarian, endometrial and cervical cancer: State of the art and future perspectives. Cancer Treat Rev. 2017;59:109–16.

Article  CAS  PubMed  Google Scholar 

Ascierto ML, Idowu MO, Zhao Y, Khalak H, Payne KK, Wang XY, Dumur CI, Bedognetti D, Tomei S, Ascierto PA, Shanker A, Bear HD, Wang E, Marincola FM, De Maria A, Manjili MH. Molecular signatures mostly associated with NK cells arepredictive of relapse free survival in breast cancer patients. J Transl Med. 2013;11(1):145.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells withinhuman colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4.

Article  CAS  PubMed  Google Scholar 

Ginsburgs VH, Goodill SW. A dance/movement therapy clinical model for women with gynecologic cancer undergoing high dose rate brachytherapy. Am J Dance Ther. 2009;31(2):136–58.

Article  Google Scholar 

Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32(19–20):1267–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parrott DV, de Sousa MA, East J. Thymus-dependent areas in the lymphoid organs of neonatally thymectomized mice. J Exp Med. 1966;123:191–204.

Article  CAS  PubMed  PubMed Central  Google Scholar 

LeBien TW, Tedder TFB. lymphocytes: how they develop and function. Blood. 2008;112:1570–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen C, Liu X, Chang CY, Wang HY, Wang RF. The interplay between T cells and cancer: the basis of immunotherapy. Genes. 2023;14:1008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lanza R, Russell DW, Nagy A. Engineering universal cells that evade immune detection. Nat Rev Immunol. 2019;19(12):723–33.

Article  CAS  PubMed  Google Scholar 

Speiser DE, Ho PC, Verdeil G. Regulatory circuits of T cell function in cancer. Nat Rev Immunol. 2016;16(10):599–611.

Article  CAS  PubMed  Google Scholar 

Donadon M, Hudspeth K, Cimino M, Di Tommaso L, Preti M, Tentorio P, et al. Increased infiltration of natural killer and T cells in colorectal liver metastases improves patient overall survival. J Gastrointest Surg. 2017;21(8):1226–36.

Article  PubMed  Google Scholar 

Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018;48:202–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van den Broek T, Borghans JAM, van Wijk F. The full spectrum of human naive T cells. Nat Rev Immunol. 2018;18(6):363–73.

Article  PubMed  Google Scholar 

Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8(7):523–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikolich-Zugich J, Slifka MK, Messaoudi I. The many important facets of T-cell repertoire diversity. Nat Rev Immunol. 2004;4:123–32.

Article  CAS  PubMed  Google Scholar 

Wilson IA, Garcia KC. T-cell receptor structure and TCR complexes. Curr Opin Struct Biol. 1997;7:839–48.

Article  CAS  PubMed  Google Scholar 

Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol. 1989;7:445–80.

Article  CAS  PubMed  Google Scholar 

Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Legut M, Dolton G, Mian AA, Ottmann OG, Sewell AK. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood. 2018;131(3):311–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuen GJ, Demissie E, Pillai S. B lymphocytes and cancer: a love–hate relationship. Trends in cancer. 2016;2(12):747–57.

Article  PubMed  PubMed Central  Google Scholar 

Chen Z, Zhu Y, Du R, Pang N, Zhang F, Dong D, et al. Role of regulatory B cells in the progression of cervical cancer. Mediat Inflamm. 2019;2019:1–8.

Google Scholar 

Zegallai HM, Abu-El-Rub E, Mejia EM, Sparagna GC, Cole LK, Marshall AJ, et al. Tafazzin deficiency attenuates anti-cluster of differentiation 40 and interleukin-4 activation of mouse B lymphocytes. Cell Tissue Res. 2022. https://doi.org/10.1007/s00441-022-03692-z.

Article  PubMed  Google Scholar 

Tan R, Nie M, Long W. The role of B cells in cancer development. Front Oncol. 2022;12: 958756.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarvaria A, Madrigal JA, Saudemont A. B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol. 2017;14(8):662–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, et al. CD20+ tumor-infiltrating lymphocytes have an atypical CD27− memory phenotype and together with CD8+ T-cells promote favorable prognosis in ovarian cancer. Clin Cancer Res. 2012;18(12):3281–92.

Article  CAS  PubMed  Google Scholar 

Katsnelson A. Kicking off adaptive immunity: the discovery of dendritic cells. J Exp Med. 2006;203(7):1622.

Article  PubMed  PubMed Central  Google Scholar 

Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20:7–24.

Article  CAS 

留言 (0)

沒有登入
gif