Drug Treatment Attenuates Retinal Ganglion Cell Death by Inhibiting Collapsin Response Mediator Protein 2 Phosphorylation in Mouse Models of Normal Tension Glaucoma

Al-Dosari, D., Ahmed, M., Al-Rejaie, S., Alhomida, A., & Ola, M. (2017). Flavonoid naringenin attenuates oxidative stress, apoptosis and improves neurotrophic effects in the diabetic rat retina. Nutrients, 9(10), 1161. https://doi.org/10.3390/nu9101161

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brahma, M. M., Takahashi, K., Namekata, K., Harada, T., Goshima, Y., & Ohshima, T. (2022). Genetic inhibition of collapsin response mediator protein-2 phosphorylation ameliorates retinal ganglion cell death in normal-tension glaucoma models. Genes to Cells, 27(8), 526–536. https://doi.org/10.1111/gtc.12971

Article  CAS  PubMed  Google Scholar 

Cole, A. R., Causeret, F., Yadirgi, G., Hastie, C. J., McLauchlan, H., McManus, E. J., Hernández, F., Eickholt, B. J., Nikolic, M., & Sutherland, C. (2006). Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. Journal of Biological Chemistry, 281(24), 16591–16598. https://doi.org/10.1074/jbc.M513344200

Article  CAS  PubMed  Google Scholar 

Cole, A. R., Noble, W., Aalten, L. V., Plattner, F., Meimaridou, R., Hogan, D., Taylor, M., LaFrancois, J., Gunn-Moore, F., Verkhratsky, A., Oddo, S., LaFerla, F., Giese, K. P., Dineley, K. T., Duff, K., Richardson, J. C., Yan, S. D., Hanger, D. P., Allan, S. M., & Sutherland, C. (2007). Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. Journal of Neurochemistry, 103(3), 1132–1144. https://doi.org/10.1111/j.1471-4159.2007.04829.x

Article  CAS  PubMed  Google Scholar 

Dong, Z., Shinmei, Y., Dong, Y., Inafuku, S., Fukuhara, J., Ando, R., Kitaichi, N., Kanda, A., Tanaka, K., Noda, K., Harada, T., Chin, S., & Ishida, S. (2016). Effect of geranylgeranylacetone on the protection of retinal ganglion cells in a mouse model of normal tension glaucoma. Heliyon, 2(10), e00191. https://doi.org/10.1016/j.heliyon.2016.e00191

Article  PubMed  PubMed Central  Google Scholar 

Eraslan, M., Çerman, E., Çeki̇ç, O., Balci, S., Deri̇ci̇oğlu, V., Şahi̇n, Ö., Süer, D., Chabou, B., & Tuncer Elmaci, E. N. (2015). Neurodegeneration in ocular and central nervous systems: Optical coherence tomography study in normal-tension glaucoma and Alzheimer disease*. Turkish Journal of Medical Sciences, 45, 1106–1114. https://doi.org/10.3906/sag-1406-145

Article  CAS  PubMed  Google Scholar 

Friedli, M. J., & Inestrosa, N. C. (2021). Huperzine A and its neuroprotective molecular signaling in Alzheimer’s disease. Molecules, 26(21), 6531. https://doi.org/10.3390/molecules26216531

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gherghel, D., Griffiths, H. R., Hilton, E. J., Cunliffe, I. A., & Hosking, S. L. (2005). Systemic reduction in glutathione levels occurs in patients with primary open-angle glaucoma. Investigative Opthalmology & Visual Science, 46(3), 877. https://doi.org/10.1167/iovs.04-0777

Article  Google Scholar 

Harada, C., Kimura, A., Guo, X., Namekata, K., & Harada, T. (2019). Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning. British Journal of Ophthalmology, 103(2), 161–166. https://doi.org/10.1136/bjophthalmol-2018-312724

Article  PubMed  Google Scholar 

Harada, T., Harada, C., Nakamura, K., Quah, H.-M.A., Okumura, A., Namekata, K., Saeki, T., Aihara, M., Yoshida, H., Mitani, A., & Tanaka, K. (2007). The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. Journal of Clinical Investigation, 117(7), 1763–1770. https://doi.org/10.1172/JCI30178

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herzon, S., & Tun, M. K. M. (2012). The pharmacology and therapeutic potential of (-)-huperzine A. Journal of Experimental Pharmacology. https://doi.org/10.2147/JEP.S27084

Article  PubMed  PubMed Central  Google Scholar 

Kara, S., Gencer, B., Karaca, T., Tufan, H. A., Arikan, S., Ersan, I., Karaboga, I., & Hanci, V. (2014). Protective effect of hesperetin and naringenin against apoptosis in ischemia/reperfusion-induced retinal injury in rats. The Scientific World Journal, 2014, 1–8. https://doi.org/10.1155/2014/797824

Article  CAS  Google Scholar 

Kayama, M., Nakazawa, T., Thanos, A., Morizane, Y., Murakami, Y., Theodoropoulou, S., Abe, T., Vavvas, D., & Miller, J. W. (2011). Heat shock protein 70 (HSP70) is critical for the photoreceptor stress response after retinal detachment via modulating anti-apoptotic Akt kinase. The American Journal of Pathology, 178(3), 1080–1091. https://doi.org/10.1016/j.ajpath.2010.11.072

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kikuchi, K., Dong, Z., Shinmei, Y., Murata, M., Kanda, A., Noda, K., Harada, T., & Ishida, S. (2020). Cytoprotective effect of astaxanthin in a model of normal intraocular pressure glaucoma. Journal of Ophthalmology, 2020, 1–6. https://doi.org/10.1155/2020/9539681

Article  CAS  Google Scholar 

Kondo, S., Takahashi, K., Kinoshita, Y., Nagai, J., Wakatsuki, S., Araki, T., Goshima, Y., & Ohshima, T. (2019). Genetic inhibition of CRMP2 phosphorylation at serine 522 promotes axonal regeneration after optic nerve injury. Scientific Reports, 9(1), 7188. https://doi.org/10.1038/s41598-019-43658-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawal, M. F., Olotu, F. A., Agoni, C., & Soliman, M. E. (2018). Exploring the C-terminal tail dynamics: Structural and molecular perspectives into the therapeutic activities of novel CRMP-2 inhibitors, naringenin and naringenin-7-O-glucuronide, in the treatment of Alzheimer’s disease. Chemistry & Biodiversity, 15(12), e1800437. https://doi.org/10.1002/cbdv.201800437

Article  CAS  Google Scholar 

Maurano, S. T. P., Da Silva, D. J., Ávila, M. P., & Magacho, L. (2018). Cognitive evaluation of patients with glaucoma and its comparison with individuals with Alzheimer’s disease. International Ophthalmology, 38(5), 1839–1844. https://doi.org/10.1007/s10792-017-0658-4

Article  PubMed  Google Scholar 

Menon, K. N., Steer, D. L., Short, M., Petratos, S., Smith, I., & Bernard, C. C. A. (2011). A novel unbiased proteomic approach to detect the reactivity of cerebrospinal fluid in neurological diseases. Molecular & Cellular Proteomics, 10(6), M110.000042. https://doi.org/10.1074/mcp.M110.000042

Article  CAS  Google Scholar 

Nakamura, F., Ohshima, T., & Goshima, Y. (2020). Collapsin response mediator proteins: Their biological functions and pathophysiology in neuronal development and regeneration. Frontiers in Cellular Neuroscience, 14, 188. https://doi.org/10.3389/fncel.2020.00188

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naskar, R., Vorwerk, C. K., & Dreyer, E. B. (2000). Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Investigative Ophthalmology & Visual Science, 41(7), 1940–1944.

CAS  Google Scholar 

Petratos, S., Ozturk, E., Azari, M. F., Kenny, R., Young Lee, J., Magee, K. A., Harvey, A. R., McDonald, C., Taghian, K., Moussa, L., Mun Aui, P., Siatskas, C., Litwak, S., Fehlings, M. G., Strittmatter, S. M., & Bernard, C. C. A. (2012). Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain, 135(6), 1794–1818. https://doi.org/10.1093/brain/aws100

Article  PubMed  PubMed Central  Google Scholar 

Quigley, H. A. (2006). The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology, 90(3), 262–267. https://doi.org/10.1136/bjo.2005.081224

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sano, H., Namekata, K., Kimura, A., Shitara, H., Guo, X., Harada, C., Mitamura, Y., & Harada, T. (2019). Differential effects of N-acetylcysteine on retinal degeneration in two mouse models of normal tension glaucoma. Cell Death & Disease, 10(2), 75. https://doi.org/10.1038/s41419-019-1365-z

Article  CAS  Google Scholar 

Seitz, R., Hackl, S., Seibuchner, T., Tamm, E. R., & Ohlmann, A. (2010). Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/β-catenin signaling pathway and the induction of neuroprotective growth factors in Müller cells. The Journal of Neuroscience, 30(17), 5998–6010. https://doi.org/10.1523/JNEUROSCI.0730-10.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanaka-Gonome, T., Xie, Y., Yamauchi, K., Maeda-Monai, N., Tanabu, R., Kudo, T., & Nakazawa, M. (2020). The protective effect of astaxanthin on the ganglion cell complex in glutamate/aspartate transporter deficient mice, a model of normal tension glaucoma, analyzed by spectral domain-optical coherence tomography. Biochemistry and Biophysics Reports, 23, 100777. https://doi.org/10.1016/j.bbrep.2020.100777

Article  PubMed  PubMed Central  Google Scholar 

Tham, Y.-C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C.-Y. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040. Ophthalmology, 121(11), 2081–2090. https://doi.org/10.1016/j.ophtha.2014.05.013

Article  PubMed  Google Scholar 

Uchida, Y., Ohshima, T., Sasaki, Y., Suzuki, H., Yanai, S., Yamashita, N., Nakamura, F., Takei, K., Ihara, Y., Mikoshiba, K., Kolattukudy, P., Honnorat, J., & Goshima, Y. (2005). Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3β phosphorylation of CRMP2: Implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease: Sema3A signalling and Alzheimer’s disease. Genes to Cells, 10(2), 165–179. https://doi.org/10.1111/j.1365-2443.2005.00827.x

Article  CAS  PubMed  Google Scholar 

Wang, C.-Y., Zheng, W., Wang, T., Xie, J.-W., Wang, S.-L., Zhao, B.-L., Teng, W.-P., & Wang, Z.-Y. (2011). Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model. Neuropsychopharmacology, 36(5), 1073–1089. https://doi.org/10.1038/npp.2010.245

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weinreb, R. N., & Khaw, P. T. (2004). Primary open-angle glaucoma. The Lancet, 363(9422), 1711–1720. https://doi.org/10.1016/S0140-6736(04)16257-0

Article  Google Scholar 

Yamashita, N., Ohshima, T., Nakamura, F., Kolattukudy, P., Honnorat, J., Mikoshiba, K., & Goshima, Y. (2012). Phosphorylation of CRMP2 (collapsin response mediator protein 2) is involved in proper dendritic field organization. The Journal of Neuroscience, 32(4), 1360–1365. https://doi.org/10.1523/JNEUROSCI.5563-11.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Z., Kuboyama, T., & Tohda, C. (2017). A systematic strategy for discovering a therapeutic drug for Alzheimer’s disease and its target molecule. Frontiers in Pharmacology, 8, 340.

留言 (0)

沒有登入
gif