The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis

Acar, G., İdiman, F., İdiman, E., Kırkalı, G., Çakmakçı, H., & Özakbaş, S. (2003). Nitric oxide as an activity marker in multiple sclerosis. Journal of Neurology, 250(5), 588–592. https://doi.org/10.1007/s00415-003-1041-0

Article  CAS  PubMed  Google Scholar 

Akhtar, M., Chen, Y., Ma, Z., Zhang, X., Shi, D., Khan, J. A., et al. (2022). Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. Anim Nutr, 8, 350–360. https://doi.org/10.1016/j.aninu.2021.11.005

Article  CAS  PubMed  Google Scholar 

Alexander, C., Swanson, K. S., Fahey, G. C., Jr., & Garleb, K. A. (2019). Perspective: Physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Advances in Nutrition, 10(4), 576–589.

Article  PubMed  PubMed Central  Google Scholar 

Alva-Murillo, N., Ochoa-Zarzosa, A., & López-Meza, J. E. (2012). Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Veterinary Microbiology, 155(2), 324–331. https://doi.org/10.1016/j.vetmic.2011.08.025

Article  CAS  PubMed  Google Scholar 

Amato, M., Hakiki, B., Goretti, B., Rossi, F., Stromillo, M. L., Giorgio, A., et al. (2012). Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology, 78(5), 309–314.

Article  CAS  PubMed  Google Scholar 

Amon, P., & Sanderson, I. (2017). What is the microbiome? Archives of Disease in Childhood-Education and Practice, 102(5), 257–260.

Article  Google Scholar 

Antunes, K. H., Fachi, J. L., de Paula, R., da Silva, E. F., Pral, L. P., dos Santos, A. Á., et al. (2019). Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nature Communications, 10(1), 3273. https://doi.org/10.1038/s41467-019-11152-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aoyama, M., Kotani, J., & Usami, M. (2010a). Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition, 26(6), 653–661. https://doi.org/10.1016/j.nut.2009.07.006

Article  CAS  PubMed  Google Scholar 

Aoyama, M., Kotani, J., & Usami, M. (2010b). Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition, 26(6), 653–661.

Article  CAS  PubMed  Google Scholar 

Arora, T., Sharma, R., & Frost, G. (2011). Propionate. Anti-obesity and satiety enhancing factor? Appetite, 56(2), 511–515.

Article  PubMed  Google Scholar 

Arpaia, N., Campbell, C., Fan, X., Dikiy, S., Van Der Veeken, J., Deroos, P., et al. (2013a). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451–455.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., deRoos, P., et al. (2013b). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451–455. https://doi.org/10.1038/nature12726

Article  CAS  PubMed  PubMed Central  Google Scholar 

Artis, D., & Spits, H. (2015). The biology of innate lymphoid cells. Nature, 517(7534), 293–301. https://doi.org/10.1038/nature14189

Article  CAS  PubMed  Google Scholar 

Baars, A., Oosting, A., Lohuis, M., Koehorst, M., El Aidy, S., Hugenholtz, F., et al. (2018). Sex differences in lipid metabolism are affected by presence of the gut microbiota. Scientific Reports, 8(1), 13426.

Article  PubMed  PubMed Central  Google Scholar 

Backhed, F., Manchester, J., Semenkovich, C., & Gordon, J. I. (2007). Mechanisms underlying the resistance to diet induced obesity in germ-free mice. Proceedings of the National Academy of Sciences, 104, 979–984.

Article  CAS  Google Scholar 

Baecher-Allan, C., Kaskow, B. J., & Weiner, H. L. (2018). Multiple sclerosis: Mechanisms and immunotherapy. Neuron, 97(4), 742–768.

Article  CAS  PubMed  Google Scholar 

Bailey, S. L., Schreiner, B., McMahon, E. J., & Miller, S. D. (2007). CNS myeloid DCs presenting endogenous myelin peptides “preferentially” polarize CD4+ T(H)-17 cells in relapsing EAE. Nature Immunology, 8(2), 172–180. https://doi.org/10.1038/ni1430

Article  CAS  PubMed  Google Scholar 

Balashov, K. E., Comabella, M., Ohashi, T., Khoury, S. J., & Weiner, H. L. (2000). Defective regulation of IFNγ and IL-12 by endogenous IL-10 in progressive MS. Neurology, 55(2), 192–198.

Article  CAS  PubMed  Google Scholar 

Beecham, A. H., Patsopoulos, N. A., Xifara, D. K., Davis, M. F., Kemppinen, A., Cotsapas, C., et al. (2013). Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 45(11), 1353–1360. https://doi.org/10.1038/ng.2770

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benedek, G., Zhang, J., Nguyen, H., Kent, G., Seifert, H. A., Davin, S., et al. (2017). Estrogen protection against EAE modulates the microbiota and mucosal-associated regulatory cells. Journal of Neuroimmunology, 310, 51–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berndt, B. E., Zhang, M., Owyang, S. Y., Cole, T. S., Wang, T. W., Luther, J., et al. (2012). Butyrate increases IL-23 production by stimulated dendritic cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 303(12), G1384-1392. https://doi.org/10.1152/ajpgi.00540.2011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernink, J. H., Peters, C. P., Munneke, M., Te Velde, A. A., Meijer, S. L., Weijer, K., et al. (2013). Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nature Immunology, 14(3), 221–229.

Article  CAS  PubMed  Google Scholar 

Bert, S., Nadkarni, S., & Perretti, M. (2023). Neutrophil-T cell crosstalk and the control of the host inflammatory response. Immunological Reviews, 314(1), 36–49.

Article  CAS  PubMed  Google Scholar 

Bolnick, D. I., Snowberg, L. K., Hirsch, P. E., Lauber, C. L., Org, E., Parks, B., et al. (2014). Individual diet has sex-dependent effects on vertebrate gut microbiota. Nature Communications, 5(1), 4500.

Article  CAS  PubMed  Google Scholar 

Bourassa, M. W., Alim, I., Bultman, S. J., & Ratan, R. R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neuroscience Letters, 625, 56–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown, E. M., Allsopp, P. J., Magee, P. J., Gill, C. I., Nitecki, S., Strain, C. R., et al. (2014). Seaweed and human health. Nutrition Reviews, 72(3), 205–216.

Article  PubMed  Google Scholar 

Browne, P., Chandraratna, D., Angood, C., Tremlett, H., Baker, C., Taylor, B. V., et al. (2014). Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity. Neurology, 83(11), 1022–1024. https://doi.org/10.1212/wnl.0000000000000768

Article  PubMed  PubMed Central  Google Scholar 

Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., et al. (2017). Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biological Psychiatry, 82(7), 472–487.

Article  CAS  PubMed  Google Scholar 

Calvo-Barreiro, L., Eixarch, H., Cornejo, T., Costa, C., Castillo, M., Mestre, L., et al. (2021). Selected clostridia strains from the human microbiota and their metabolite, butyrate improve experimental autoimmune encephalomyelitis. Neurotherapeutics, 18(2), 920–937. https://doi.org/10.1007/s13311-021-01016-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Camara-Lemarroy, C. R., Silva, C., Greenfield, J., Liu, W.-Q., Metz, L. M., & Yong, V. W. (2020). Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. Multiple Sclerosis Journal, 26(11), 1340–1350.

Article  CAS  PubMed  Google Scholar 

Cantarel, B. L., Waubant, E., Chehoud, C., Kuczynski, J., DeSantis, T. Z., Warrington, J., et al. (2015). Gut microbiota in multiple sclerosis: Possible influence of immunomodulators. Journal of Investigative Medicine, 63(5), 729–734.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cantoni, C., Lin, Q., Dorsett, Y., Ghezzi, L., Liu, Z., Pan, Y., et al. (2022). Alterations of host-gut microbiome interactions in multiple sclerosis. eBioMedicine. https://doi.org/10.1016/j.ebiom.2021.103798

Article  PubMed  PubMed Central  Google Scholar 

Cassatella, M. A. (1995). The production of cytokines by polymorphonuclear neutrophils. Immunology Today, 16(1), 21–26. https://doi.org/10.1016/0167-5699(95)80066-2

Article  CAS  PubMed  Google Scholar 

Casserly, C. S., Nantes, J. C., Whittaker Hawkins, R. F., & Vallières, L. (2017). Neutrophil perversion in demyelinating autoimmune diseases: Mechanisms to medicine. Autoimmunity Reviews, 16(3), 294–307. https://doi.org/10.1016/j.autrev.2017.01.013

留言 (0)

沒有登入
gif