Effect of Clemizole on Alpha-Synuclein-Preformed Fibrils-Induced Parkinson’s Disease Pathology: A Pharmacological Investigation

Brendza, R., Gao, X., Stark, K. L., Lin, H., Lee, S. H., Hu, C., et al. (2023). Anti-α-synuclein c-terminal antibodies block PFF uptake and accumulation of phospho-synuclein in preclinical models of Parkinson’s disease. Neurobiology of Diseases, 177, 105969. https://doi.org/10.1016/j.nbd.2022.105969

Article  CAS  Google Scholar 

Cappai, R., Leck, S. L., Tew, D. J., Williamson, N. A., Smith, D. P., Galatis, D., et al. (2005). Dopamine promotes alpha-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. The FASEB Journal, 19(10), 1377–1379. https://doi.org/10.1096/fj.04-3437fje

Article  CAS  PubMed  Google Scholar 

Caropreso, V., Darvishi, E., Turbyville, T. J., Ratnayake, R., Grohar, P. J., McMahon, J. B., et al. (2016). Englerin A Inhibits EWS-FLI1 DNA Binding in Ewing Sarcoma Cells. Journal of Biological Chemistry, 291(19), 10058–10066. https://doi.org/10.1074/jbc.M115.701375

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chinnapaka, S., Zheng, G., Chen, A., & Munirathinam, G. (2019). Nitro aspirin (NCX4040) induces apoptosis in PC3 metastatic prostate cancer cells via hydrogen peroxide (H(2)O(2))-mediated oxidative stress. Free Radical Biology & Medicine, 143, 494–509. https://doi.org/10.1016/j.freeradbiomed.2019.08.025

Article  CAS  Google Scholar 

Chinta, S. J., Mallajosyula, J. K., Rane, A., & Andersen, J. K. (2010). Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neuroscience Letters, 486(3), 235–239. https://doi.org/10.1016/j.neulet.2010.09.061

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung, S., Yang, J., Kim, H. J., Hwang, E. M., Lee, W., Suh, K., et al. (2021). Plexin-A4 mediates amyloid-beta-induced tau pathology in Alzheimer’s disease animal model. Progress in Neurobiology, 203, 102075. https://doi.org/10.1016/j.pneurobio.2021.102075

Article  CAS  PubMed  Google Scholar 

Das, N. R., Vaidya, B., Khare, P., Bishnoi, M., & Sharma, S. S. (2021). Combination of Peroxisome Proliferator-activated Receptor Gamma (PPARgamma) Agonist and PPAR Gamma Co-Activator 1alpha (PGC-1alpha) Activator Ameliorates Cognitive Deficits, Oxidative Stress, and Inflammation in Rodent Model of Parkinson’s Disease. Current Neurovascular Research, 18(5), 497–507. https://doi.org/10.2174/1567202619666211217140954

Article  CAS  PubMed  Google Scholar 

De March, Z., Giampa, C., Patassini, S., Bernardi, G., & Fusco, F. R. (2006). Cellular localization of TRPC5 in the substantia nigra of rat. Neuroscience Letters, 402(1–2), 35–39. https://doi.org/10.1016/j.neulet.2006.03.061

Article  CAS  PubMed  Google Scholar 

Devi, L., Raghavendran, V., Prabhu, B. M., Avadhani, N. G., & Anandatheerthavarada, H. K. (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. Journal of Biological Chemistry, 283(14), 9089–9100. https://doi.org/10.1074/jbc.M710012200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dryanovski, D. I., Guzman, J. N., Xie, Z., Galteri, D. J., Volpicelli-Daley, L. A., Lee, V. M., et al. (2013). Calcium entry and alpha-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. Journal of Neuroscience, 33(24), 10154–10164. https://doi.org/10.1523/JNEUROSCI.5311-12.2013

Article  CAS  PubMed  Google Scholar 

Elzamzamy, O. M., Johnson, B. E., Chen, W. C., Hu, G., Penner, R., & Hazlehurst, L. A. (2021). Transient Receptor Potential C 1/4/5 is a determinant of MTI-101 induced calcium influx and cell death in multiple myeloma. Cells. https://doi.org/10.3390/cells10061490

Article  PubMed  PubMed Central  Google Scholar 

Gao, J., Perera, G., Bhadbhade, M., Halliday, G. M., & Dzamko, N. (2019). Autophagy activation promotes clearance of alpha-synuclein inclusions in fibril-seeded human neural cells. Journal of Biological Chemistry, 294(39), 14241–14256. https://doi.org/10.1074/jbc.RA119.008733

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giraldez-Perez, R., Antolin-Vallespin, M., Munoz, M., & Sanchez-Capelo, A. (2014). Models of alpha-synuclein aggregation in Parkinson’s disease. Acta Neuropathologica Communications, 2, 176. https://doi.org/10.1186/s40478-014-0176-9

Article  PubMed  PubMed Central  Google Scholar 

Gomez-Benito, M., Granado, N., Garcia-Sanz, P., Michel, A., Dumoulin, M., & Moratalla, R. (2020). Modeling Parkinson’s disease With the alpha-synuclein protein. Frontiers in Pharmacology, 11, 356. https://doi.org/10.3389/fphar.2020.00356

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gueguinou, M., Ibrahim, S., Bourgeais, J., Robert, A., Pathak, T., Zhang, X., et al. (2022). Curcumin and NCLX inhibitors share anti-tumoral mechanisms in microsatellite-instability-driven colorectal cancer. Cellular and Molecular Life Sciences, 79(6), 284. https://doi.org/10.1007/s00018-022-04311-4

Article  CAS  PubMed  Google Scholar 

Hong, C., Seo, H., Kwak, M., Jeon, J., Jang, J., Jeong, E. M., et al. (2015). Increased TRPC5 glutathionylation contributes to striatal neuron loss in Huntington’s disease. Brain, 138(Pt 10), 3030–3047. https://doi.org/10.1093/brain/awv188

Article  PubMed  PubMed Central  Google Scholar 

Howe, J. W., Sortwell, C. E., Duffy, M. F., Kemp, C. J., Russell, C. P., Kubik, M., et al. (2021). Preformed fibrils generated from mouse alpha-synuclein produce more inclusion pathology in rats than fibrils generated from rat alpha-synuclein. Parkinsonism & Related Disorders, 89, 41–47. https://doi.org/10.1016/j.parkreldis.2021.06.010

Article  CAS  Google Scholar 

Kaczmarek, J. S., Riccio, A., & Clapham, D. E. (2012). Calpain cleaves and activates the TRPC5 channel to participate in semaphorin 3A-induced neuronal growth cone collapse. Proceedings of the National Academy of Sciences, 109(20), 7888–7892. https://doi.org/10.1073/pnas.1205869109

Article  Google Scholar 

Kardani, J., Sethi, R., & Roy, I. (2017). Nicotine slows down oligomerisation of α-synuclein and ameliorates cytotoxicity in a yeast model of Parkinson’s disease. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1863(6), 1454–1463. https://doi.org/10.1016/j.bbadis.2017.02.002

Article  CAS  PubMed  Google Scholar 

Khandelwal, P. J., & Moussa, C. E. (2010). The relationship between parkin and protein aggregation in neurodegenerative diseases. Front Psychiatry, 1, 15. https://doi.org/10.3389/fpsyt.2010.00015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Legier, T., Rattier, D., Llewellyn, J., Vannier, T., Sorre, B., Maina, F., et al. (2023). Epithelial disruption drives mesendoderm differentiation in human pluripotent stem cells by enabling TGF-beta protein sensing. Nature Communications, 14(1), 349. https://doi.org/10.1038/s41467-023-35965-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, W., & Ehrich, M. (2022). Effects of chlorpyrifos on transient receptor potential channels. Toxicology Letters, 358, 100–104. https://doi.org/10.1016/j.toxlet.2022.01.016

Article  CAS  PubMed  Google Scholar 

Li, Z. C., Zhao, Y. S., Lin, J. J., Wang, L. L., Song, H. X., Gan, C. L., et al. (2023). Sodium para-aminosalicylic acid ameliorates brain neuroinflammation and behavioral deficits in juvenile lead-exposed rats by modulating MAPK signaling pathway and alpha-synuclein. Toxicology Letters, 375, 48–58. https://doi.org/10.1016/j.toxlet.2022.12.013

Article  CAS  PubMed  Google Scholar 

Luk, K. C., Song, C., O’Brien, P., Stieber, A., Branch, J. R., Brunden, K. R., et al. (2009). Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proceedings of the National Academy of Sciences, 106(47), 20051–20056. https://doi.org/10.1073/pnas.0908005106

Article  Google Scholar 

Magalhaes, P., & Lashuel, H. A. (2022). Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson’s disease and other synucleinopathies. NPJ Parkinsons Disease, 8(1), 93. https://doi.org/10.1038/s41531-022-00357-0

Article  CAS  Google Scholar 

Martinez, J., Moeller, I., Erdjument-Bromage, H., Tempst, P., & Lauring, B. (2003). Parkinson’s disease-associated alpha-synuclein is a calmodulin substrate. Journal of Biological Chemistry, 278(19), 17379–17387. https://doi.org/10.1074/jbc.M209020200

Article  CAS  PubMed  Google Scholar 

McCann, H., Stevens, C. H., Cartwright, H., & Halliday, G. M. (2014). alpha-Synucleinopathy phenotypes. Parkinsonism & Related Disorders, 20(Suppl 1), S62-67. https://doi.org/10.1016/S1353-8020(13)70017-8

Article  Google Scholar 

Mittal, R., Kumar, A., Singh, D. P., Bishnoi, M., & Nag, T. C. (2018). Ameliorative potential of rutin in combination with nimesulide in STZ model of diabetic neuropathy: Targeting Nrf2/HO-1/NF-kB and COX signalling pathway. Inflammopharmacology, 26(3), 755–768. https://doi.org/10.1007/s10787-017-0413-5

Article  CAS  PubMed  Google Scholar 

Murray, K. A., Hu, C. J., Pan, H., Lu, J., Abskharon, R., Bowler, J. T., et al. (2023). Small molecules disaggregate alpha-synuclein and prevent seeding from patient brain-derived fibrils. Proceedings of the National Academy of Sciences, 120(7), e2217835120. https://doi.org/10.1073/pnas.2217835120

Article  CAS  Google Scholar 

Ordaz, B., Tang, J., Xiao, R., Salgado, A., Sampieri, A., Zhu, M. X., et al. (2005). Calmodulin and calcium interplay in the modulation of TRPC5 channel activity Identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation. Journal of Biological Chemistry, 280(35), 30788–30796. https://doi.org/10.1074/jbc.M504745200

Article  CAS  PubMed  Google Scholar 

Parihar, M. S., Parihar, A., Fujita, M., Hashimoto, M., & Ghafourifar, P. (2008). Mitochondrial association of alpha-synuclein causes oxidative stress. Cellular and Molecular Life Sciences, 65(7–8), 1272–1284. https://doi.org/10.1007/s00018-008-7589-1

Article  CAS  PubMed  Google Scholar 

Park, M. K., Choi, B. Y., Kho, A. R., Lee, S. H., Hong, D. K., Jeong, J. H., et al. (2020). Effects of transient receptor potential cation 5 (TRPC5) inhibitor, NU6027, on hippocampal neuronal death after traumatic brain injury. International Journal of Molecular Sciences.

留言 (0)

沒有登入
gif