Flack JM, Adekola B. Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc Med. 2020;30(3):160–4. https://doi.org/10.1016/j.tcm.2019.05.003.
Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL, Dennison-Himmelfarb CR, et al. Resistant hypertension: detection, evaluation, and management a scientific statement from the American Heart Association. Hypertension. 2018;72(5):e53–90. https://doi.org/10.1161/HYP.0000000000000084.
Article CAS PubMed Google Scholar
Acelajado MC, Hughes ZH, Oparil S, Calhoun DA. Treatment of resistant and refractory hypertension. Circ Res. 2019;124(7):1061–70. https://doi.org/10.1161/CIRCRESAHA.118.312156.
Article CAS PubMed PubMed Central Google Scholar
Dudenbostel T, Acelajado MC, Pisoni R, Li P, Oparil S, Calhoun DA. Refractory hypertension: evidence of heightened sympathetic activity as a cause of antihypertensive treatment failure. Hypertension. 2015;66(1):126–33. https://doi.org/10.161/HYPERTENSIONAHA.115.05449.
Article CAS PubMed Google Scholar
- Krieger EM, Drager LF, Giorgi DMA, Pereira AC, Barreto-Filho JAS, Nogueira AR, Mill JG, Lotufo PA, Amodeo C, Batista MC, Bodanese LC, Carvalho ACC, Castro I, Chaves H, Costa EAS, Feitosa GS, Franco RJS, Fuchs FD, Guimarães AC, Jardim PC, Machado CA, Magalhães ME, Mion D Jr, Nascimento RM, Nobre F, Nóbrega AC, Ribeiro ALP, Rodrigues-Sobrinho CR, Sanjuliani AF, Teixeira MDCB, Krieger JE. ReHOT investigators. Spironolactone Versus Clonidine as a fourth-drug therapy for resistant hypertension: the ReHOT Randomized Study (resistant hypertension optimal treatment). Hypertension. 2018;71(4):681–90. https://doi.org/10.1161/HYPERTENSIONAHA.117.10662. Epub 2018 Feb 20. PMID: 29463627.
Article CAS PubMed Google Scholar
Brant LCC, Passaglia LG, Pinto-Filho MM, de Castilho FM, Ribeiro ALP, Nascimento BR. The Burden of Resistant Hypertension Across the World. Curr Hypertens Rep. 2022;24(3):55–66. https://doi.org/10.1007/s11906-022-01173-w. Epub 2022 Feb 3. PMID: 35118612.
Wang KM, Stedman MR, Chertow GM, Chang TI. Factors Associated with failure to achieve the intensive blood pressure target in the systolic blood pressure intervention trial (SPRINT). Hypertension. 2020;76(6):1725–33. https://doi.org/10.1161/HYPERTENSIONAHA.120.16155.
Article CAS PubMed Google Scholar
Tsujimoto T, Kajio H. Intensive blood pressure treatment for resistant hypertension: secondary analysis of a Randomized Controlled Trial. Hypertension. 2019;73(2):415–23. https://doi.org/10.1161/HYPERTENSIONAHA.118.12156.
Article CAS PubMed Google Scholar
Cai A, Calhoun DA. Resistant hypertension: an update of experimental and clinical findings. Hypertension. 2017;70(1):5–9. https://doi.org/10.1161/HYPERTENSIONAHA.117.08929.
Article CAS PubMed Google Scholar
Jama HA, Muralitharan RR, Xu C, O’Donnell JA, Bertagnolli M, Broughton BRS, et al. Rodent models of hypertension. Br J Pharmacol. 2022;179(5):918–37. https://doi.org/10.1111/bph.15650.
Article CAS PubMed Google Scholar
Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, et al. Animal models of hypertension: a Scientific Statement from the American Heart Association. Hypertension. 2019;73(6):e87–120. https://doi.org/10.1161/HYP.0000000000000090. This scientific statement of the American Heart Association addresses the utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities, pointing to unmet needs in existing experimental models.
Sigmund CD, Carey RM, Appel LJ, Arnett DK, Bosworth HB, Cushman WC, et al. Report of the National Heart, Lung, and Blood Institute Working Group on Hypertension: barriers to translation. Hypertension. 2020;75(4):902–17. https://doi.org/10.1161/HYPERTENSIONAHA.119.13887.
Article CAS PubMed Google Scholar
**Esler M, Julius S, Coghlan B, Sari CI, Guo L, Esler D. Consequences of the evolutionary cardiovascular challenge of human bipedalism. J Hypertens. 2019;37(12):2333-40. https://doi.org/10.1097/HJH.0000000000002198 This study demonstrates the challenges of a background of arterial baroreceptor dominance in quadrupeds and monkeys to more predominant cardiopulmonary volume reflex as response to instantaneous blood volume changes with standing as bipedalism. Cardiovascular orthostatic intolerance and orthostatic hypotension may be considered an expression of the evolutionary adaptation failure to bipedalism.
Joe B. Dr Lewis Kitchener Dahl, the dahl rats, and the inconvenient truth about the genetics of hypertension. Hypertension. 2015;65(5):963–9. https://doi.org/10.1161/HYPERTENSIONAHA.114.04368.
Article CAS PubMed Google Scholar
Ben-Ishay D, Zamir N, Feurstein G, Kobrin I, Le Quan-Bui KH, Devynck MA. Distinguishing traits in the sabra hypertension-prone (SBH) and hypertension-resistant (SBN) rats. Clin Exp Hypertens. 1981;3(4):737–47. https://doi.org/10.3109/10641968109033698.
Yagil G, Katni G, Rubattu S, Stolpe C, Kreutz R, Lindpaintner K, et al. Development, genotype and phenotype of a new colony of the Sabra hypertension prone (SBH/y) and resistant (SBN/y) rat model of salt sensitivity and resistance. J Hypertens. 1996;14(10):1175–82. https://doi.org/10.1097/00004872-199610000-00004.
Article CAS PubMed Google Scholar
Nawata J, Yamamoto T, Tanaka S, Yano Y, Uchida T, Fujii S, et al. Dantrolene improves left ventricular diastolic property in mineralcorticoid-salt-induced hypertensive rats. Biochem Biophys Rep. 2023;34:101449. https://doi.org/10.1016/j.bbrep.2023.101449.
Article CAS PubMed PubMed Central Google Scholar
Doulberis M, Papaefthymiou A, Polyzos SA, Katsinelos P, Grigoriadis N, Srivastava DS et al. Rodent models of obesity. Minerva Endocrinol 202045(3):243–63. https://doi.org/10.23736/S0391-1977.19.03058-X.
Vieira-Rocha MS, Sousa JB, Rodríguez-Rodríguez P, Arribas SM, Diniz C. Elevated vascular sympathetic neurotransmission and remodelling is a common feature in a rat model of Foetal Programming of Hypertension and SHR. Biomedicines. 2022;10(8):1902. https://doi.org/10.3390/biomedicines10081902.
Article CAS PubMed PubMed Central Google Scholar
Yugar-Toledo JC, Modolo R, de Faria AP, Moreno H. Managing resistant hypertension: focus on mineralocorticoid-receptor antagonists. Vasc Health Risk Manag. 2017;13:403–11. https://doi.org/10.2147/VHRM.S138599.
Article CAS PubMed PubMed Central Google Scholar
Maiuolo J, Carresi C, Gliozzi M, Mollace R, Scarano F, Scicchitano M, et al. The contribution of gut microbiota and endothelial dysfunction in the development of arterial hypertension in animal models and in humans. Int J Mol Sci. 2022;23(7):3698. https://doi.org/10.3390/ijms23073698.
Article CAS PubMed PubMed Central Google Scholar
Yoshimoto M, Onishi Y, Mineyama N, Ikegame S, Shirai M, Osborn JW, et al. Renal and lumbar sympathetic nerve activity during development of hypertension in Dahl Salt-Sensitive rats. Hypertension. 2019;74(4):888–95. https://doi.org/10.1161/HYPERTENSIONAHA.119.12866.
Article CAS PubMed Google Scholar
Townsend RR. Pathogenesis of drug-resistant hypertension. Semin Nephrol. 2014;34(5):506–13. https://doi.org/10.1016/j.semnephrol.2014.08.004.
Article CAS PubMed Google Scholar
Grassi G. The sympathetic nervous system in hypertension: Roadmap Update of a long journey. Am J Hypertens. 2021;34(12):1247–54. https://doi.org/10.1093/ajh/hpab124.
Article PubMed PubMed Central Google Scholar
Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens. 2016;10(5):457–66. https://doi.org/10.1016/j.jash.2016.02.015.
Article CAS PubMed Google Scholar
Mann SJ. Neurogenic hypertension: pathophysiology, diagnosis and management. Clin Auton Res. 2018;28(4):363–. https://doi.org/10.1007/s.10286-018-0541-z. 74.
DeLalio LJ, Sved AF, Stocker SD. Sympathetic nervous system contributions to hypertension: updates and therapeutic relevance. Can J Cardiol. 2020;36(5):712–20. https://doi.org/10.1016/j.cjca.2020.03.003.
Voora R, Hinderliter AL. Modulation of sympathetic overactivity to treat resistant hypertension. Curr Hypertens Rep. 2018;20(11):92. https://doi.org/10.1007/s11906-018-0893-8.
Article CAS PubMed Google Scholar
Pontes RB, Girardi ACC, Nishi EE, Campos RR, Bergamaschi CT. Crosstalk between the renal sympathetic nerve and intrarenal angiotensin II modulates proximal tubular sodium reabsorption. Exp Physiol. 2015;100(5):502–6. https://doi.org/10.1113/EP085075.
留言 (0)