Russell PS, Itkin M, Windsor JA, Phillips ARJ. Kidney Lymphatics. Compr Physiol. 2023;13(3):4945–84. https://doi.org/10.1002/cphy.c220029.
Baker ML, Cantley LG. The lymphatic system in kidney disease. Kidney360. 2023;4(6):e841–50. https://doi.org/10.34067/kid.0000000000000120.
Article PubMed PubMed Central Google Scholar
Dormans TP, Pickkers P, Russel FG, Smits P. Vascular effects of loop diuretics. Cardiovasc Res. 1996;32(6):988–97. https://doi.org/10.1016/s0008-6363(96)00134-4.
Article CAS PubMed Google Scholar
Daniels TF, Killinger KM, Michal JJ, Wright RW Jr., Jiang Z. Lipoproteins, cholesterol homeostasis and cardiac health. Int J Biol Sci. 2009;5(5):474–88. https://doi.org/10.7150/ijbs.5.474.
Huang LH, Elvington A, Randolph GJ. The role of the lymphatic system in cholesterol transport. Front Pharmacol. 2015;6:182. https://doi.org/10.3389/fphar.2015.00182.
Article CAS PubMed PubMed Central Google Scholar
Dixon JB. Lymphatic lipid transport: sewer or subway? Trends Endocrinol Metab. 2010;21(8):480–7. https://doi.org/10.1016/j.tem.2010.04.003.
Article CAS PubMed PubMed Central Google Scholar
Clement CC, Aphkhazava D, Nieves E, Callaway M, Olszewski W, Rotzschke O, et al. Protein expression profiles of human lymph and plasma mapped by 2D-DIGE and 1D SDS-PAGE coupled with nanoLC-ESI-MS/MS bottom-up proteomics. J Proteom. 2013;78:172–87. https://doi.org/10.1016/j.jprot.2012.11.013.
Goldfinch GM, Smith WD, Imrie L, McLean K, Inglis NF, Pemberton AD. The proteome of gastric lymph in normal and nematode infected sheep. Proteomics. 2008;8(9):1909–18. https://doi.org/10.1002/pmic.200700531.
Article CAS PubMed Google Scholar
Oveland E, Karlsen TV, Haslene-Hox H, Semaeva E, Janaczyk B, Tenstad O, et al. Proteomic evaluation of inflammatory proteins in rat spleen interstitial fluid and lymph during LPS-induced systemic inflammation reveals increased levels of ADAMST1. J Proteome Res. 2012;11(11):5338–49. https://doi.org/10.1021/pr3005666.
Article CAS PubMed Google Scholar
Diebel LN, Liberati DM, Ledgerwood AM, Lucas CE. Changes in lymph proteome induced by hemorrhagic shock: the appearance of damage-associated molecular patterns. J Trauma Acute Care Surg. 2012;73(1):41–50. https://doi.org/10.1097/TA.0b013e31825e8b32. discussion 1.
Article CAS PubMed Google Scholar
Hansen KC, D’Alessandro A, Clement CC, Santambrogio L. Lymph formation, composition and circulation: a proteomics perspective. Int Immunol. 2015;27(5):219–27. https://doi.org/10.1093/intimm/dxv012.
Article CAS PubMed Google Scholar
Liao S, Padera TP. Lymphatic function and immune regulation in health and disease. Lymphat Res Biol. 2013;11(3):136–43. https://doi.org/10.1089/lrb.2013.0012.
Article CAS PubMed PubMed Central Google Scholar
Solari E, Marcozzi C, Negrini D, Moriondo A. Lymphatic vessels and their surroundings: how local physical factors affect Lymph Flow. Biology (Basel). 2020;9(12). https://doi.org/10.3390/biology9120463.
Jantsch J, Schatz V, Friedrich D, Schröder A, Kopp C, Siegert I, et al. Cutaneous na + storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab. 2015;21(3):493–501. https://doi.org/10.1016/j.cmet.2015.02.003.
Article CAS PubMed PubMed Central Google Scholar
Rossi GP, Rossi FB, Guarnieri C, Rossitto G, Seccia TM. Clinical management of primary aldosteronism: an update. Hypertension. 2024;81(9):1845–56. https://doi.org/10.1161/hypertensionaha.124.22642.
Article CAS PubMed Google Scholar
Bagordo D, Rossi GP, Delles C, Wiig H, Rossitto G. Tangram of Sodium and Fluid Balance. Hypertension. 2024;81(3):490–500. https://doi.org/10.1161/hypertensionaha.123.19569.
Article CAS PubMed Google Scholar
Sulyok E, Farkas B, Nagy B, Várnagy Á, Kovács K, Bódis J. Tissue Sodium Accumulation: pathophysiology and clinical implications. Antioxid (Basel). 2022;11(4). https://doi.org/10.3390/antiox11040750.
Go WY, Liu X, Roti MA, Liu F, Ho SN. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proc Natl Acad Sci U S A. 2004;101(29):10673–8. https://doi.org/10.1073/pnas.0403139101.
Article CAS PubMed PubMed Central Google Scholar
Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15(5):545–52. https://doi.org/10.1038/nm.1960.
Article CAS PubMed Google Scholar
Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Müller DN, et al. Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013;23(3):635–40. https://doi.org/10.1161/hypertensionaha.111.00566.
Lemoine S, Salerno FR, Akbari A, McKelvie RS, McIntyre CW. Tissue Sodium Storage in patients with heart failure: a New Therapeutic Target? Circ Cardiovasc Imaging. 2021;14(11):e012910. https://doi.org/10.1161/circimaging.121.012910.
Rossitto G, Mary S, Chen JY, Boder P, Chew KS, Neves KB, et al. Tissue sodium excess is not hypertonic and reflects extracellular volume expansion. Nat Commun. 2020;11(1):4222.
Article CAS PubMed PubMed Central Google Scholar
Akbari A, McIntyre CW. Recent advances in Sodium magnetic resonance imaging and its future role in kidney disease. J Clin Med. 2023;12(13). https://doi.org/10.3390/jcm12134381.
Liu J, Shelton EL, Crescenzi R, Colvin DC, Kirabo A, Zhong J, et al. Kidney Injury causes Accumulation of Renal Sodium that modulates renal Lymphatic dynamics. Int J Mol Sci. 2022;23(3). https://doi.org/10.3390/ijms23031428.
Katz YJ, Cockett AT. Elevation of inferior vena cava pressure and thoracic lymph and urine flow. Circ Res. 1959;7(1):118–22. https://doi.org/10.1161/01.res.7.1.118.
Article CAS PubMed Google Scholar
Lebrie SJ, Mayerson HS. Influence of elevated venous pressure on flow and composition of renal lymph. Am J Physiol. 1960;198:1037–40. https://doi.org/10.1152/ajplegacy.1960.198.5.1037.
Article CAS PubMed Google Scholar
Wiig H, Schröder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest. 2013;123(7):2803–15. https://doi.org/10.1172/jci60113.
Article CAS PubMed PubMed Central Google Scholar
Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. 2004;113(7):1040–50. https://doi.org/10.1172/jci20465.
Article CAS PubMed PubMed Central Google Scholar
Donnan MD, Kenig-Kozlovsky Y, Quaggin SE. The lymphatics in kidney health and disease. Nat Rev Nephrol. 2021;17(10):655–75. https://doi.org/10.1038/s41581-021-00438-y.
Pei G, Yao Y, Yang Q, Wang M, Wang Y, Wu J, et al. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. Sci Adv. 2019;5(6):eaaw5075. https://doi.org/10.1126/sciadv.aaw5075.
Article CAS PubMed PubMed Central Google Scholar
Kinashi H, Ito Y, Sun T, Katsuno T, Takei Y. Roles of the TGF-β⁻VEGF-C pathway in fibrosis-related lymphangiogenesis. Int J Mol Sci. 2018;19(9). https://doi.org/10.3390/ijms19092487.
Liu J, Yu C. Lymphangiogenesis and Lymphatic Barrier Dysfunction in Renal Fibrosis. Int J Mol Sci. 2022;23(13). https://doi.org/10.3390/ijms23136970.
Lee AS, Lee JE, Jung YJ, Kim DH, Kang KP, Lee S, et al. Vascular endothelial growth factor-C and -D are involved in lymphangiogenesis in mouse unilateral ureteral obstruction. Kidney Int. 2013;83(1):50–62. https://doi.org/10.1038/ki.2012.312.
留言 (0)