Association between dietary magnesium intake, inflammation, and neurodegeneration

Department of Economic and Social, Affairs PD (2022) World Population Prospects 2022

Velandia PP, Miller-Petrie MK, Chen C et al (2022) Global and regional spending on dementia care from 2000–2019 and expected future health spending scenarios from 2020–2050: an economic modelling exercise. https://doi.org/10.1016/j.eclinm.2022.101337. eClinicalMedicine 45:

Scarmeas N, Anastasiou CA, Yannakoulia M (2018) Nutrition and prevention of cognitive impairment. Lancet Neurol 17:1006–1015

Article  PubMed  Google Scholar 

Tao M, Liu J, Cervantes D (2022) Association between magnesium intake and cognition in US older adults: National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Alzheimer’s Dement Transl Res Clin Interv 8. https://doi.org/10.1002/trc2.12250

Ozawa M, Ninomiya T, Ohara T et al (2012) Self-reported dietary intake of potassium, calcium, and magnesium and risk of dementia in the Japanese: the hisayama study. J Am Geriatr Soc 60:1515–1520. https://doi.org/10.1111/j.1532-5415.2012.04061.x

Article  PubMed  Google Scholar 

Kirkland AE, Sarlo GL, Holton KF (2018) The role of Magnesium in Neurological disorders. Nutrients 10. https://doi.org/10.3390/nu10060730

Cherbuin N (2016) Dietary Mineral Intake (Magnesium, Calcium, and Potassium) and the biological processes of aging. Elsevier Inc

Alateeq K, Walsh EI, Cherbuin N (2023) Dietary magnesium intake is related to larger brain volumes and lower white matter lesions with notable sex differences. Eur J Nutr. https://doi.org/10.1007/s00394-023-03123-x

Article  PubMed  PubMed Central  Google Scholar 

Cherbuin N, Kumar R, Sachdev PS, Anstey KJ (2014) Dietary mineral intake and risk of mild cognitive impairment: the PATH through life project. Front Aging Neurosci 6:1–8. https://doi.org/10.3389/fnagi.2014.00004

Article  Google Scholar 

Luo J, Zhang C, Zhao Q et al (2022) Dietary calcium and magnesium intake and risk for incident dementia: the Shanghai Aging Study. Alzheimer’s Dement Transl Res Clin Interv 8. https://doi.org/10.1002/trc2.12362

Du K, Zheng X, Ma Z-T et al (2022) Association of Circulating Magnesium Levels in patients with Alzheimer’s Disease from 1991 to 2021: a systematic review and Meta-analysis. Front Aging Neurosci 13:799824. https://doi.org/10.3389/fnagi.2021.799824

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thomassen JQ, Tolstrup JS, Nordestgaard BG et al (2021) Plasma concentrations of Magnesium and Risk of Dementia: a General Population Study of 102 648 individuals. Clin Chem 67:899–911. https://doi.org/10.1093/clinchem/hvab041

Article  PubMed  Google Scholar 

Rosique-Esteban N, Guasch-Ferré M, Hernández-Alonso P, Salas-Salvadó J (2018) Dietary magnesium and cardiovascular disease: a review with emphasis in epidemiological studies. Nutrients 10:1–21. https://doi.org/10.3390/nu10020168

Article  CAS  Google Scholar 

Dibaba DT, Xun P, Song Y et al (2017) The effect of magnesium supplementation on blood pressure in individuals with insulin resistance, prediabetes, or noncommunicable chronic diseases: a meta-analysis of randomized controlled trials. Am J Clin Nutr 106:921–929. https://doi.org/10.3945/ajcn.117.155291

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kass L, Weekes J, Carpenter L (2012) Effect of magnesium supplementation on blood pressure: a meta-analysis. Eur J Clin Nutr 66:411–418. https://doi.org/10.1038/ejcn.2012.4

Article  CAS  PubMed  Google Scholar 

Bo S, Pisu E (2008) Role of dietary magnesium in cardiovascular disease prevention, insulin sensitivity and diabetes. Curr Opin Lipidol 19:50–56. https://doi.org/10.1097/MOL.0b013e3282f33ccc

Article  CAS  PubMed  Google Scholar 

Alateeq K, Walsh EI, Abhayaratna WP, Cherbuin N (2022) Effects of higher normal blood pressure on Brain are detectable before Middle-Age and Differ by Sex. J Clin Med 11:3127. https://doi.org/10.3390/jcm11113127

Article  PubMed  PubMed Central  Google Scholar 

Alateeq K, Walsh EI, Cherbuin N (2021) Higher blood pressure is associated with greater white matter lesions and brain atrophy: a systematic review with meta-analysis. J Clin Med 10:1–22

Article  Google Scholar 

Cherbuin N, Mortby ME, Janke AL et al (2015) Blood pressure, brain structure, and cognition: opposite associations in men and women. Am J Hypertens 28:225–231. https://doi.org/10.1093/ajh/hpu120

Article  PubMed  Google Scholar 

Cherbuin N, Walsh EI, Shaw M et al (2021) Optimal blood pressure keeps our brains younger. Front Aging Neurosci 13:529. https://doi.org/10.3389/fnagi.2021.694982

Article  Google Scholar 

Forte G, De Pascalis V, Favieri F, Casagrande M (2019) Effects of blood pressure on cognitive performance: a systematic review. J Clin Med 9:34. https://doi.org/10.3390/jcm9010034

Article  PubMed  PubMed Central  Google Scholar 

Lee CJ, Lee JY, Han K et al (2022) Blood pressure levels and risks of dementia: a nationwide study of 4.5 million people. Hypertension 79:218–229. https://doi.org/10.1161/HYPERTENSIONAHA.121.17283

Article  CAS  PubMed  Google Scholar 

Mazur A, Maier JAM, Rock E et al (2007) Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys 458:48–56. https://doi.org/10.1016/j.abb.2006.03.031

Article  CAS  PubMed  Google Scholar 

Song Y, Li TY, van Dam RM et al (2007) Magnesium intake and plasma concentrations of markers of systemic inflammation and endothelial dysfunction in women. Am J Clin Nutr 85:1068–1074. https://doi.org/10.1093/ajcn/85.4.1068

Article  CAS  PubMed  Google Scholar 

Simental-Mendia LE, Sahebkar A, Rodriguez-Moran M et al (2017) Effect of Magnesium supplementation on plasma C-reactive protein concentrations: a systematic review and Meta-analysis of Randomized controlled trials. Curr Pharm Des 23. https://doi.org/10.2174/1381612823666170525153605

Jang S, Ogunmoroti O, Ndumele CE et al (2020) Association of the novel inflammatory marker GlycA and Incident Heart failure and its subtypes of preserved and reduced ejection fraction: the multi-ethnic study of atherosclerosis. Circ Hear Fail 13:E007067. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007067

Article  CAS  Google Scholar 

Cherbuin N, Walsh EI, Leach L et al (2022) Systemic inflammation predicts Alzheimer Pathology in Community samples without dementia. Biomedicines 10:1240. https://doi.org/10.3390/biomedicines10061240

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuo HK, Yen CJ, Chang CH et al (2005) Relation of C-reactive protein to stroke, cognitive disorders, and depression in the general population: systematic review and meta-analysis. Lancet Neurol 4:371–380

Article  CAS  PubMed  Google Scholar 

Cooper J, Pastorello Y, Slevin M (2023) A meta-analysis investigating the relationship between inflammation in autoimmune disease, elevated CRP, and the risk of dementia. Front Immunol 14:1087571. https://doi.org/10.3389/fimmu.2023.1087571

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long S, Chen Y, Meng Y et al (2023) Peripheral high levels of CRP predict progression from normal cognition to dementia: a systematic review and meta-analysis. J Clin Neurosci 107:54–63

Article  CAS  PubMed  Google Scholar 

Ng A, Tam WW, Zhang MW et al (2018) IL-1β, IL-6, TNF- α and CRP in Elderly patients with Depression or Alzheimer’s disease: systematic review and Meta-analysis. Sci Rep 8. https://doi.org/10.1038/s41598-018-30487-6

Justiz Vaillant AA, Qurie A (2022) Interleukin. StatPearls Publishing

Brocker C, Thompson D, Matsumoto A et al (2010) Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum Genomics 5:30–55. https://doi.org/10.1186/1479-7364-5-1-30

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouchla A, Kriebardis AG, Georgatzakou HT et al (2022) Red blood cell abnormalities as the Mirror of SARS-CoV-2 Disease Severity: a pilot study. Front Physiol 12:2487. https://doi.org/10.3389/fphys.2021.825055

Article  Google Scholar 

Gruppen EG, Riphagen IJ, Connelly MA et al (2015) GlycA, a pro-inflammatory glycoprotein biomarker, and incident cardiovascular disease: relationship with C-reactive protein and renal function. PLoS ONE 10. https://doi.org/10.1371/journal.pone.0139057

Akinkuolie AO, Glynn RJ, Padmanabhan L et al (2016) Circulating N-Linked glycoprotein side-chain biomarker, Rosuvastatin Therapy, and Incident Cardiovascular Disease: an analysis from the JUPITER Trial. J Am Heart Assoc 5. https://doi.org/10.1161/JAHA.116.003822

Akinkuolie AO, Buring JE, Ridker PM, Mora S (2014) A novel protein glycan biomarker and future cardiovascular disease events. J Am Heart Assoc 3. https://doi.org/10.1161/JAHA.114.001221

Duprez DA, Otvos J, Sanchez OA et al (2016) Comparison of the predictive value of GlycA and other biomarkers of inflammation for total death, incident cardiovascular events, noncardiovascular and noncancer inflammatory-related events, and total cancer events. Clin Chem 62:1020–1031. https://doi.org/10.1373/clinchem.2016.255828

Article  CAS  PubMed  Google Scholar 

Miller KL, Alfaro-Almagro F, Bangerter NK et al (2016) Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci 19:1523–1536. https://doi.org/10.1038/nn.4393

Article  CAS  PubMed  PubMed Central  Google Scholar 

von Elm E, Altman DG, Egger M et al (2007) Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ 335:806–808. https://doi.org/10.1136/bmj.39335.541782.AD

Article  Google Scholar 

Galante J, Adamska L, Young A et al (2016) The acceptability of repeat internet-based hybrid diet assessment of previous 24-h dietary intake: administration of the Oxford WebQ in UK Biobank. Br J Nutr 115:681–686. https://doi.org/10.1017/S0007114515004821

Article  CAS  PubMed  Google Scholar 

Liu B, Young H, Crowe FL et al (2011) Development and evaluation of the oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr 14:1998–2005. https://doi.org/10.1017/S1368980011000942

Article  PubMed  Google Scholar 

Reuter M, Fischl B (2011) Avoiding asymmetry-induced bias in longitudinal image processing. NeuroImage 57:19–21. https://doi.org/10.1016/j.neuroimage.2011.02.076

Article  PubMed  Google Scholar 

Majrashi NA, Ahearn TS, Williams JHG, Waiter GD (2020) Sex differences in the association of photoperiod with hippocampal subfield volumes in older adults: a cross-sectional study in the UK Biobank cohort. Brain Behav 10:01593–01603. https://doi.org/10.1002/brb3.1593

Article 

留言 (0)

沒有登入
gif