Exploring tradeoffs among diet quality and environmental impacts in self-selected diets: a population-based study

Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello FN, Leip A (2021) Food systems are responsible for a third of global anthropogenic GHG emissions. Nat Food 13:915–919. https://doi.org/10.1017/S1368980010001096

Clark M, Tilman D (2017) Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ Res Lett 12:064016. https://doi.org/10.1088/1748-9326/aa6cd5

Article  CAS  Google Scholar 

Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, DeClerck F, Wood A (2019) Food in the anthropocene: the EAT–lancet commission on healthy diets from sustainable food systems. The Lancet 393:447–492. https://doi.org/10.1016/S0140-6736(18)31788-4

Tuomisto HL (2019) The complexity of sustainable diets. Nat Ecol Evol 3:720. https://doi.org/10.1038/s41559-019-0875-5

Conrad Z, Blackstone NT, Roy ED (2020) Healthy diets can create environmental trade-offs, depending on how diet quality is measured. Nutr J 19:1–15. https://doi.org/10.1186/s12937-020-00629-6

Vieux F, Soler L-G, Touazi D, Darmon N (2013) High nutritional quality is not associated with low greenhouse gas emissions in self-selected diets of French adults. Am J Clin Nutr 97:569–583. https://doi.org/10.3945/ajcn.112.035105

Vieux F, Privet L, Soler LG, Irz X, Ferrari M, Sette S, Raulio S, Tapanainen H, Hoffmann R, Surry Y (2020) More sustainable European diets based on self-selection do not require exclusion of entire categories of food. J Clean Prod 248:119298. https://doi.org/10.1016/j.jclepro.2019.119298

Aleksandrowicz L, Green R, Joy EJM, Smith P, Haines A (2016) The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: a systematic review. PLoS One 11:e0165797. https://doi.org/10.1371/journal.pone.0165797

Gazan R, Brouzes CMC, Vieux F, Maillot M, Lluch A, Darmon N (2018) Mathematical optimization to explore tomorrow’s sustainable diets: a narrative review. Advances in Nutrition 9:602–616. https://doi.org/10.1093/advances/nmy049

Mazac R, Meinilä J, Korkalo L, Järviö N, Jalava M, Tuomisto HL (2022) Incorporation of novel foods in European diets can reduce global warming potential, water use and land use by over 80%. Nat Food 3:286–293. https://doi.org/10.1038/s43016-022-00489-9

Article  PubMed  Google Scholar 

Perignon M, Darmon N (2022) Advantages and limitations of the methodological approaches used to study dietary shifts towards improved nutrition and sustainability. Nutr Rev 80:579–597. https://doi.org/10.1093/nutrit/nuab091

Article  PubMed  Google Scholar 

Heerschop SN, Biesbroek S, Temme EHM, Ocké MC (2021) Can healthy and sustainable dietary patterns that fit within current Dutch food habits be identified? Nutrients 13:1176. https://doi.org/10.3390/nu13041176

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finnish Institute for Health and Welfare (2019) FinHealth 2017 Study: Methods

Meltzer HM, Brantsæter AL, Ydersbond TA, Alexander J, Haugen M, Hareide B, Hovengen R, Lie KK, Magnus P, Nordhagen R, Nystad W, Rønningen KS, Vollset SE (2008) Methodological challenges when monitoring the diet of pregnant women in a large study: Experiences from the Norwegian Mother and Child Cohort Study (MoBa). Matern Child Nutr 4:14–27. https://doi.org/10.1111/j.1740-8709.2007.00104.x

Article  PubMed  Google Scholar 

Männistö S, Virtanen M, Mikkonen T, Pietinen P (1996) Reproducibility and validity of a food frequency questionnaire in a case-control study on breast cancer. J Clin Epidemiol 49:401–409. https://doi.org/10.1016/0895-4356(95)00551-X

Article  PubMed  Google Scholar 

Kaartinen NE, Tapanainen H, Valsta LM, Similä ME, Reinivuo H, Korhonen T, Harald K, Eriksson JG, Peltonen M, Männistö S (2012) Relative validity of a FFQ in measuring carbohydrate fractions, dietary glycaemic index and load: exploring the effects of subject characteristics. Br J Nutr 107:1367–1375. https://doi.org/10.1017/S0007114511004296

Article  CAS  PubMed  Google Scholar 

Valsta L, Kaartinen N, Tapanainen H, Männistö S, Sääksjärvi K (2018) Ravitsemus Suomessa - FinRavinto 2017 -tutkimus

Reinivuo H, Hirvonen T, Ovaskainen ML, Korhonen T, Valsta LM (2010) Dietary survey methodology of FINDIET 2007 with a risk assessment perspective. Public Health Nutr 13:915–919. https://doi.org/10.1017/S1368980010001096

Article  PubMed  Google Scholar 

Männistö S, Harald K, Härkänen T, Maukonen M, Eriksson JG, Heikkinen S, Jousilahti P, Kaartinen NE, Kanerva N, Knekt P, Koskinen S, Laaksonen MA, Malila N, Rissanen H, Pitkäniemi J (2021) Association between overall diet quality and postmenopausal breast cancer risk in five Finnish cohort studies. Sci Rep 11:16718. https://doi.org/10.1038/s41598-021-95773-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Paassen M, Braconi N, Kuling L, Durlinger B, Gual P (2019) Agri-footprint 5.0

French Agency for Ecological Transition (2020) AGRIBALYSE 3.0 | Agricultural and food database for French products and food LCA. https://simapro.com/products/agribalyse-agricultural-database/

GreenDelta (2007) Open LCA. 1.10.3

Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R (2017) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22:138–147. https://doi.org/10.1007/s11367-016-1246-y

Article  Google Scholar 

Koch P, Salou T (2016) AGRIBALYSE ® : Rapport méthodologique Version 1.3

Hallström E, Davis J, Håkansson N, Ahlgren S, Åkesson A, Wolk A, Sonesson U (2022) Dietary environmental impacts relative to planetary boundaries for six environmental indicators—a population-based study. J Clean Prod 373:133949. https://doi.org/10.1016/j.jclepro.2022.133949

Article  Google Scholar 

Abdi H, Williams LJ, Valentin D (2013) Multiple factor analysis: Principal component analysis for multitable and multiblock data sets. Wiley Interdiscip Rev Comput Stat 5:149–179. https://doi.org/10.1002/wics.1246

Article  Google Scholar 

Pagès J (2014) Multiple factor analysis by example using R

Pagès J, Husson F (2013) Multiple factor analysis: Presentation of the method using sensory data. In: Mathematical and Statistical Methods in Food Science and Technology

Gleason PM, Boushey CJ, Harris JE, Zoellner J (2015) Publishing nutrition research: a review of multivariate techniques-part 3: data reduction methods. J Acad Nutr Diet 115:1072–1082. https://doi.org/10.1016/j.jand.2015.03.011

Article  PubMed  Google Scholar 

Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S-1228S. https://doi.org/10.1093/ajcn/65.4.1220S

Article  CAS  PubMed  Google Scholar 

Willett W (2013) Nutritional Epidemiology, 1st edn. Oxford University Press, Oxford, UK

Google Scholar 

Team RC (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing

Lê S, Josse J, Husson F (2008) FactoMineR: An R package for multivariate analysis. J Stat Softw 25:1–18. https://doi.org/10.18637/jss.v025.i01

Vaissie P, Monge A, Husson F (2022) Factoshiny: Perform Factorial Analysis from “FactoMineR” with a Shiny Application

Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31:651–666. https://doi.org/10.1016/j.patrec.2009.09.011

Article  Google Scholar 

Kanerva N, Kaartinen NE, Schwab U, Lahti-Koski M, Männistö S (2014) The Baltic Sea Diet Score: a tool for assessing healthy eating in Nordic countries. Public Health Nutr 17:1697–1705. https://doi.org/10.1017/S1368980013002395

Article  PubMed  Google Scholar 

Kaartinen NE, Tapanainen H, Männistö S, Reinivuo H, Virtanen SM, Jousilahti P, Koskinen S, Valsta LM (2021) Changes in food consumption and nutrient intake in Finnish adults 1997–2017: The National FinDiet Survey (in Finnish, abstract in English). Finnish Med J 76:273–280

Google Scholar 

National Nutrition Council of Finland (2014) Terveyttä Ruoasta: Suomalaiset Ravitsemussuositukset 2014 (in Finnish)

Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NME, Achoki T, Albuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DFJ, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SEAH, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KMV, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJC, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJL, Gakidou E (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. The Lancet 384:766–781. https://doi.org/10.1016/S0140-6736(14)60460-8

Article  Google Scholar 

Perignon M, Masset G, Ferrari G, Barré T, Vieux F, Maillot M, Amiot M-J, Darmon N (2016) How low can dietary greenhouse gas emissions be reduced without impairing nutritional adequacy, affordability and acceptability of the diet? A modelling study to guide sustainable food choices. Public Health Nutr 19:2662–2674. https://doi.org/10.1017/S1368980016000653

Fresán U, Craig WJ, Martínez-González MA, Bes-Rastrollo M (2020) Nutritional quality and health effects of low environmental impact diets: the “seguimiento universidad de navarra” (sun) Cohort. Nutrients 12:2385. https://doi.org/10.3390/nu12082385

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winfield IJ (2015) Eutrophication and freshwater fisheries. In: Freshwater Fisheries Ecology

Scherer L, Pfister S (2016) Global biodiversity loss by freshwater consumption and eutrophication from swiss food consumption. Environ Sci Technol 50:7019–7028. https://doi.org/10.1021/acs.est.6b00740

Article  CAS  PubMed  Google Scholar 

Statistics Finland (2022) Official Statistics of Finland (OSF): Greenhouse gases [e-publication]. Helsinki

Kyttä V, Hyvönen T, Saarinen M (2023) Land-use-driven biodiversity impacts of diets—a comparison of two assessment methods in a Finnish case study. Int J Life Cycle Assess 28:1104–1116. https://doi.org/10.1007/s11367-023-02201-w

Article  Google Scholar 

Saarinen M, Heikkinen J, Ketoja E, Kyttä V, Hartikainen H, Silvennoinen K, Valsta L, Lång K (2023) Soil carbon plays a role in the climate impact of diet and its mitigation: the Finnish case. Front Sustain Food Syst 7:. https://doi.org/10.3389/fsufs.2023.904570

Finnish Environment Institute (Syke), Ministry of the Environment (2022) Ehdotus Suomen merenhoitosuunnitelman toimenpideohjelmaksi vuosiksi 2022–2027 (In Finnish). In: Merenhoito on yhteinen asiamme. https://www.ymparisto.fi/fi-FI/Vaikuta_vesiin/Merenhoito. Accessed 8 Mar 2022

Irz X, Leroy P, Réquillart V, Soler L-G (2016) Welfare and sustainability effects of dietary recommendations. Ecol Econ 130:139–155. https://doi.org/10.1016/j.ecolecon.2016.06.025

Article  Google Scholar 

Perignon M, Barré T, Gazan R, Amiot M-J, Darmon N (2018) The bioavailability of iron, zinc, protein and vitamin A is highly variable in French individual diets: Impact on nutrient inadequacy assessment and relation with the animal-to-plant ratio of diets. Food Chem 238:73–81. https://doi.org/10.1016/j.foodchem.2016.12.070

Article  CAS  PubMed  Google Scholar 

Vieux F, Perignon M, Gazan R, Darmon N (2018) Dietary changes needed to improve diet sustainability: are they similar across Europe? Eur J Clin Nutr 72:951–960

Article  PubMed  PubMed Central  Google Scholar 

Mariotti G (2019) Dietary Protein and Amino Acids in Vegetarian Diets—A Review. Nutrients 11:2661. https://doi.org/10.3390/nu11112661

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barré T, Perignon M, Gazan R, Vieux F, Micard V, Amiot MJ, Darmon N (2018) Integrating nutrient bioavailability and coproduction links when identifying sustainable diets: How low should we reduce meat consumption? PLoS One 13:. https://doi.org/10.1371/journal.pone.0191767

Valsta LM, Tapanainen H, Kortetmäki T, Sares-Jäske L, Paalanen L, Kaartinen NE, Haario P, Kaljonen M (2022) Disparities in Nutritional Adequacy of Diets between Different Socioeconomic Groups of Finnish Adults. Nutrients 14:1347. https://doi.org/10.3390/nu14071347

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif