Map-1a regulates Sertoli cell BTB dynamics through the cytoskeletal organization of microtubule and F-actin

Gudimchuk NB, McIntosh JR. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol. 2021;22:777–95.

Article  CAS  PubMed  Google Scholar 

Rolls MM. Principles of microtubule polarity in linear cells. Dev Biol. 2022;483:112–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Yan M, Wong CKC, Ge R, Wu X, Sun F, Cheng CY. Microtubule-associated proteins (MAPs) in microtubule cytoskeletal dynamics and spermatogenesis. Histol Histopathol. 2021;36:249–65.

CAS  PubMed  Google Scholar 

Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow F. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell. 1997;89:297–308.

Article  CAS  PubMed  Google Scholar 

Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn. 2018;247:138–55.

Article  CAS  PubMed  Google Scholar 

Tang EI, Xiao X, Mruk DD, Qian XJ, Mok KW, Jenardhanan P, Lee WM, Mathur PP, Cheng CY. Microtubule affinity-regulating kinase 4 (MARK4) is a component of the ectoplasmic specialization in the rat testis. Spermatogenesis. 2012;2:117–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang EI, Mruk DD, Cheng CY. MAP/microtubule affinity-regulating kinases, microtubule dynamics, and spermatogenesis. J Endocrinol. 2013;217:R13–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang EI, Mruk DD, Cheng CY. Regulation of microtubule (MT)-based cytoskeleton in the seminiferous epithelium during spermatogenesis. Semin Cell Dev Biol. 2016;59:35–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drewes G. MARKing tau for tangles and toxicity. Trends Biochem Sci. 2004;29:548–55.

Article  CAS  PubMed  Google Scholar 

Mao BP, Ge R, Cheng CY. Role of microtubule +TIPs and -TIPs in spermatogenesis - Insights from studies of toxicant models. Reprod Toxicol. 2020;91:43–52.

Article  CAS  PubMed  Google Scholar 

Alfaro-Aco R, Petry S. Building the Microtubule Cytoskeleton Piece by Piece. J Biol Chem. 2015;290:17154–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hooikaas PJ, Martin M, Mühlethaler T, Kuijntjes GJ, Peeters CAE, Katrukha EA, Ferrari L, Stucchi R, Verhagen DGF, van Riel WE, et al. MAP7 family proteins regulate kinesin-1 recruitment and activation. J Cell Biol. 2019;218:1298–318.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monroy BY, Sawyer DL, Ackermann BE, Borden MM, Tan TC, Ori-McKenney KM. Competition between microtubule-associated proteins directs motor transport. Nat Commun. 2018;9:1487.

Article  PubMed  PubMed Central  Google Scholar 

Dunleavy JEM, O’Bryan MK, Stanton PG, O’Donnell L. The cytoskeleton in spermatogenesis. Reproduction. 2019;157:R53–72.

Article  CAS  PubMed  Google Scholar 

O’Donnell L, Smith LB, Rebourcet D. Sertoli cells as key drivers of testis function. Semin Cell Dev Biol. 2022;121:2–9.

Article  CAS  PubMed  Google Scholar 

Wang L, Yan M, Wu S, Mao B, Wong CKC, Ge R, Sun F, Cheng CY. Microtubule cytoskeleton and spermatogenesis-lesson from studies of toxicant models. Toxicol Sci. 2020;177:305–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wen Q, Tang EI, Lui WY, Lee WM, Wong CKC, Silvestrini B, Cheng CY. Dynein 1 supports spermatid transport and spermiation during spermatogenesis in the rat testis. Am J Physiol Endocrinol Metab. 2018;315:E924–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu S, Lv L, Li L, Wang L, Mao B, Li J, Shen X, Ge R, Wong CKC, Sun F, Cheng CY. KIF15 supports spermatogenesis via its effects on Sertoli cell microtubule, actin, vimentin, and septin cytoskeletons. Endocrinology. 2021;162:bqab010.

Article  PubMed  PubMed Central  Google Scholar 

Yan M, Li L, Mao BP, Li H, Li SYT, Mruk D, Silvestrini B, Lian Q, Ge R, Cheng CY. mTORC1/rpS6 signaling complex modifies BTB transport function - an in vivo study using the adjudin model. Am J Physiol Endocrinol Metab. 2019;317:E121–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Yan M, Li H, Wu S, Ge R, Wong CKC, Silvestrini B, Sun F, Cheng CY. The non-hormonal male contraceptive adjudin exerts its effects via MAPs and signaling proteins mTORC1/rpS6 and FAK-Y407. Endocrinology. 2021;162:bqaa196. https://doi.org/10.1210/endocr/bqaa1196. (PMID:33094326).

Article  PubMed  Google Scholar 

Takei Y, Kikkawa YS, Atapour N, Hensch TK, Hirokawa N. Defects in Synaptic Plasticity, Reduced NMDA-Receptor Transport, and Instability of Postsynaptic Density Proteins in Mice Lacking Microtubule-Associated Protein 1A. J Neurosci. 2015;35:15539–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Lee JW, Ackerman SL. Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration. J Neurosci. 2015;35:4587–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satterstrom FK, Walters RK, Singh T, Wigdor EM, Lescai F, Demontis D, Kosmicki JA, Grove J, Stevens C, Bybjerg-Grauholm J, et al. Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat Neurosci. 2019;22:1961–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aravindan GR, Pineau C, Bardin CW, Cheng CY. Ability of trypsin in mimicking germ cell factors that affect Sertoli cell secretory function. J Cell Physiol. 1996;168:123–33.

Article  CAS  PubMed  Google Scholar 

Wang L, Li X, Bu T, Wu X, Li L, Gao S, Yun D, Zhang Y, Chen H, Sun F, Cheng CY. Cadmium-induced Sertoli Cell Injury Through p38-MAPK and Related Signaling Proteins-a study by RNA Sequencing. Endocrinology. 2023;164:bqad045. https://doi.org/10.1210/endocr/bqad045).

Article  PubMed  Google Scholar 

Mruk DD, Cheng CY. An in vitro system to study Sertoli cell blood-testis barrier dynamics. Methods Mol Biol. 2011;763:237–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siu MKY, Wong CH, Lee WM, Cheng CY. Sertoli-germ cell anchoring junction dynamics in the testis are regulated by an interplay of lipid and protein kinases. J Biol Chem. 2005;280:25029–47.

Article  CAS  PubMed  Google Scholar 

Li MWM, Mruk DD, Lee WM, Cheng CY. Disruption of the blood-testis barrier integrity by bisphenol A in vitro: Is this a suitable model for studying blood-testis barrier dynamics? Int J Biochem Cell Biol. 2009;41:2302–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lie PPY, Cheng CY, Mruk DD. Crosstalk between desmoglein-2/desmocollin-2/Src kinase and coxsackie and adenovirus receptor/ZO-1 protein complexes, regulates blood-testis barrier dynamics. Int J Biochem Cell Biol. 2010;42:975–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung NPY, Cheng CY. Is cadmium chloride-induced inter-Sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology. 2001;142:1878–88.

Article  CAS  PubMed  Google Scholar 

Siu ER, Wong EWP, Mruk DD, Sze KL, Porto CS, Cheng CY. An occludin-focal adhesion kinase protein complex at the blood-testis barrier: a study using the cadmium model. Endocrinology. 2009;150:3336–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siu ER, Wong EWP, Mruk DD, Porto CS, Cheng CY. Focal adhesion kinase is a blood-testis barrier regulator. Proc Natl Acad Sci USA. 2009;106:9298–303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong CH, Mruk DD, Lui WY, Cheng CY. Regulation of blood-testis barrier dynamics: an in vivo study. J Cell Sci. 2004;117:783–98.

Article  CAS  PubMed  Google Scholar 

Mao B, Li L, Yan M, Wong CKC, Silvestrini B, Li C, Ge R, Lian Q, Cheng CY. F5-Peptide and mTORC1/rpS6 Effectively Enhance BTB Transport Function in the Testis-Lesson From the Adjudin Model. Endocrinology. 2019;160:1832–53.

Article 

留言 (0)

沒有登入
gif