CRISPR/Cas9 targeted mutations of OsDSG1 gene enhanced salt tolerance in rice

Alam MS, Kong J, Tao R et al (2022) CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants 11:1184. https://doi.org/10.3390/plants11091184

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anh LH, Hue HT, Quoc NK, et al (2016) Effect of salt on growth of rice landraces in Vietnam. Int Lett Nat Sci 59. https://doi.org/10.56431/p-fxja21

Anjaneyulu E, Reddy PS, Sunita MS et al (2014) Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H+-pyrophosphatase gene (SbVPPase) from Sorghum bicolor. J Plant Physiol 171:789–798. https://doi.org/10.1016/j.jplph.2014.02.001

Article  CAS  PubMed  Google Scholar 

Ban Z, Estelle M (2021) CUL3 E3 ligases in plant development and environmental response. Nat Plants 7:6–16. https://doi.org/10.1038/s41477-020-00833-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bazzaz MM, Hossain MA (2015) Plant water relations and proline accumulations in soybean under salt and water stress environment. J Plant Sci 3:272–278. https://doi.org/10.11648/j.jps.20150305.15

Article  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

Article  CAS  PubMed  Google Scholar 

Chapagain S, Park YC, Kim JH, Jang CS (2018) Oryza sativa salt-induced RING E3 ligase 2 (OsSIRP2) acts as a positive regulator of transketolase in plant response to salinity and osmotic stress. Planta 247:925–939. https://doi.org/10.1007/s00425-017-2838-x

Article  CAS  PubMed  Google Scholar 

Chen T, Zhang B (2016) Measurements of proline and malondialdehyde content and antioxidant enzyme activities in leaves of drought stressed cotton. Bio-Protoc 6:e1913–e1913. https://doi.org/10.21769/BioProtoc.1913

Article  Google Scholar 

Devkota KP, Devkota M, Rezaei M, Oosterbaan R (2022) Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agric Syst 198:103390. https://doi.org/10.1016/j.agsy.2022.103390

Article  Google Scholar 

Dogan M, Tipirdamaz R, Demir Y (2010) Salt resistance of tomato species grown in sand culture. Plant Soil Environ 56:499–507. https://doi.org/10.17221/24/2010-PSE

Article  CAS  Google Scholar 

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12(1):13–15

Google Scholar 

Fang H, Meng Q, Xu J et al (2015) Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice. Plant Mol Biol 87:441–458. https://doi.org/10.1007/s11103-015-0294-1

Article  CAS  PubMed  Google Scholar 

Farooq M, Park J-R, Jang Y-H et al (2021) Rice cultivars under salt stress Show differential expression of genes related to the regulation of Na+/K+ balance. Front Plant Sci 12:680131. https://doi.org/10.3389/fpls.2021.680131

Article  PubMed  PubMed Central  Google Scholar 

Gerona MEB, Deocampo MP, Egdane JA et al (2019) Physiological responses of contrasting rice genotypes to salt stress at reproductive stage. Rice Sci 26:207–219. https://doi.org/10.1016/j.rsci.2019.05.001

Article  Google Scholar 

Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 8:plw055. https://doi.org/10.1093/aobpla/plw055

Gong D, He F, Liu J et al (2022) Understanding of hormonal regulation in rice seed germination. Life 12:1021. https://doi.org/10.3390/life12071021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoang TM, Moghaddam L, Williams B et al (2015) Development of salinity tolerance in rice by constitutive-overexpression of genes involved in the regulation of programmed cell death. Front Plant Sci 6:175. https://doi.org/10.3389/fpls.2015.00175

Article  PubMed  PubMed Central  Google Scholar 

Huong CT, Anh TTT, Dat TD et al (2020) Uniparental inheritance of salinity tolerance and beneficial phytochemicals in rice. Agronomy 10:1032. https://doi.org/10.3390/agronomy10071032

Article  CAS  Google Scholar 

Hwang S, Kim JJ, Lim SD et al (2016) Molecular dissection of Oryza sativa salt-induced RING Finger Protein 1 (OsSIRP1): possible involvement in the sensitivity response to salinity stress. Physiol Plant 158:168–179. https://doi.org/10.1111/ppl.12459

Article  CAS  PubMed  Google Scholar 

Hwang S, Chapagain S, Han A et al (2017) Molecular characterization of rice arsenic-induced RING finger E3 ligase 2 (OsAIR2) and its heterogeneous overexpression in Arabidopsis thaliana. Physiol Plant 161:372–384. https://doi.org/10.1111/ppl.12607

Article  CAS  PubMed  Google Scholar 

Islam F, Yasmeen T, Ali S et al (2015) Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiol Plant 37:153. https://doi.org/10.1007/s11738-015-1897-5

Article  CAS  Google Scholar 

Kámán-Tóth E, Pogány M, Dankó T et al (2018) A simplified and efficient Agrobacterium tumefaciens electroporation method. 3 Biotech 8:148. https://doi.org/10.1007/s13205-018-1171-9

Article  PubMed  PubMed Central  Google Scholar 

Khodarahmpour Z, Ifar M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11:298–304. https://doi.org/10.5772/intechopen.93647

Article  CAS  Google Scholar 

Kim M-S, Ko S-R, Jung YJ et al (2023) Knockout mutants of OsPUB7 generated using CRISPR/Cas9 revealed abiotic stress tolerance in rice. Int J Mol Sci 24:5338. https://doi.org/10.3390/ijms24065338

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar D, Das PK, Sarmah BK (2018) Reference gene validation for normalization of RT-qPCR assay associated with germination and survival of rice under hypoxic condition. J Appl Genet 59:419–430. https://doi.org/10.1007/s13353-018-0466-1

Article  PubMed  Google Scholar 

Lim SD, Jung CG, Park YC et al (2015) Molecular dissection of a rice microtubule-associated RING finger protein and its potential role in salt tolerance in Arabidopsis. Plant Mol Biol 89:365–384. https://doi.org/10.1007/s11103-015-0375-1

Article  CAS  PubMed  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expressiondata using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Article  CAS  PubMed  Google Scholar 

Mbarki S, Sytar O, Cerda A et al (2018) Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. In: Kumar V, Wani SH, Suprasanna P, Tran L-SP (eds) Salinity responses and tolerance in plants, Volume 1. Springer International Publishing, Cham, pp 85–136. https://doi.org/10.1007/978-3-319-75671-4_4

Chapter  Google Scholar 

Nguyen DQ, Nguyen NL, Nguyen VT et al (2023) Reliable Reference Genes for Accurate Gene Expression Profiling across Different Tissues and Genotypes of Rice Seedlings (Oryza sativa L.) under Salt Stress. Russ J Plant Physiol 70:104. https://doi.org/10.1134/S102144372360068X

Article  CAS  Google Scholar 

Park G-G, Park J-J, Yoon J et al (2010) A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol 74:467–478. https://doi.org/10.1007/s11103-010-9687-3

Article  CAS  PubMed  Google Scholar 

Park YC, Chapagain S, Jang CS (2018) A negative regulator in response to salinity in rice: Oryza sativa salt-, ABA-and drought-induced RING finger protein 1 (OsSADR1). Plant Cell Physiol 59:575–589. https://doi.org/10.1093/pcp/pcy009

Article  CAS  PubMed  Google Scholar 

Rasheed A, Gill RA, Hassan MU et al (2021) A critical review: recent advancements in the use of CRISPR/Cas9 technology to enhance crops and alleviate global food crises. Curr Issues Mol Biol 43:1950–1976. https://doi.org/10.3390/cimb43030135

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasheed A, Li H, Nawaz M et al (2022) Molecular tools, potential frontiers for enhancing salinity tolerance in rice: A critical review and future prospective. Front Plant Sci 13:966749. https://doi.org/10.3389/fpls.2022.966749

Article  PubMed  PubMed Central  Google Scholar 

Santosh Kumar VV, Verma RK, Yadav SK et al (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26:1099–1110. https://doi.org/10.1007/s12298-020-00819-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Senthilkumar M, Amaresan N, Sankaranarayanan A (2021) Determination of Chlorophyll. Plant-Microbe Interactions. Springer US, New York, NY, pp 145–146. https://doi.org/10.1007/978-1-0716-1080-0_37

Chapter  Google Scholar 

Singh RK, Kota S, Flowers TJ (2021) Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theor Appl Genet 134:3495–3533. https://doi.org/10.1007/s00122-021-03890-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sultana S, Paul SC, Parveen S et al (2020) Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress. Can J Microbiol 66:144–160. https://doi.org/10.1139/cjm-2019-0323

Article  CAS  PubMed 

留言 (0)

沒有登入
gif