PANoptosis: bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment

Bedoui S, Herold MJ, Strasser AA-O. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21:678–95.

Article  CAS  PubMed  Google Scholar 

Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. Cell Death Differ. 2016;23:915–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li MA-O, Wang ZW, Fang LJ, Cheng SQ, Wang X, Liu NF. Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis. 2022;13:467.

Article  PubMed  PubMed Central  Google Scholar 

Lee E, Song CH, Bae SJ, Ha KA-O, Karki RA-O. Regulated cell death pathways and their roles in homeostasis, infection, inflammation, and tumorigenesis. Exp Mol Med. 2023;55:1632–43.

Article  PubMed  PubMed Central  Google Scholar 

Samir P, Malireddi RKS, Kanneganti TD. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:238.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun X, Yang Y, Meng X, Li J, Liu X, Liu HA-OX. PANoptosis: mechanisms, biology, and role in disease. Immunol Rev. 2024;321:246–62.

Article  CAS  PubMed  Google Scholar 

Malireddi RKS, Tweedell RE, Kanneganti TD. PANoptosis components, regulation, and implications. Aging (Albany NY). 2020;12:11163–4.

Article  PubMed  Google Scholar 

Obeng EA-O. Apoptosis (programmed cell death) and its signals - a review. Braz J Biol. 2021;81:1133–43.

Article  CAS  PubMed  Google Scholar 

O’Neill KL, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30:973–88.

Article  PubMed  PubMed Central  Google Scholar 

Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;9:47–59.

Google Scholar 

Flores-Romero HA-O, Hohorst LA-OX, John MA-O, Albert MC, King LE, Beckmann L, et al. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J. 2022;41:e108690.

Article  CAS  PubMed  Google Scholar 

Li P, Nijhawan D, Fau - Budihardjo I, Budihardjo I, Fau - Srinivasula SM, Srinivasula Sm Fau - Ahmad M, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–89.

Article  CAS  PubMed  Google Scholar 

Hu Q, Wu D, Chen W, Yan Z, Yan C, He T, et al. Molecular determinants of caspase-9 activation by the Apaf-1 apoptosome. Proc Natl Acad Sci USA. 2014;111:16254–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou M, Li Y, Hu Q, Bai XC, Huang W, Yan C, et al. Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. Genes Dev. 2015;29:2349–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Messmer MN, Snyder AG, Oberst A. Comparing the effects of different cell death programs in tumor progression and immunotherapy. Cell Death Differ. 2019;26:115–29.

Article  PubMed  Google Scholar 

Kiraz Y, Adan A, Kartal Yandim M, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 2016;37:8471–86.

Article  CAS  PubMed  Google Scholar 

Sharma DA-O, Kanneganti TD. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J Cell Biol. 2016;213:617–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16:407–20.

Article  CAS  PubMed  Google Scholar 

Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol. 2019;40:1035–52.

Article  CAS  PubMed  Google Scholar 

Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535:111–6.

Article  CAS  PubMed  Google Scholar 

Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.

Article  CAS  PubMed  Google Scholar 

He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25:1285–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514:187–92.

Article  CAS  PubMed  Google Scholar 

Lee BL, Stowe IB, Gupta A, Kornfeld OS, Roose-Girma M, Anderson K, et al. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J Exp Med. 2018;215:2279–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding J, Shao F. SnapShot: the noncanonical inflammasome. Cell. 2017;168:544–e1.

Article  CAS  PubMed  Google Scholar 

Xia XA-O, Lei L, Wang S, Hu J, Zhang G. Necroptosis and its role in infectious diseases. Apoptosis. 2020;25:169–78.

Article  PubMed  Google Scholar 

Han J, Zhong CQ, Zhang DW. Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol. 2011;12:1143–9.

Article  CAS  PubMed  Google Scholar 

Fuchs Y, Steller H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015;16:329–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Annibaldi A, Meier P. Checkpoints in TNF-induced cell death: implications in inflammation and cancer. Trends Mol Med. 2018;24:49–65.

Article  CAS  PubMed  Google Scholar 

Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 2012;150:339–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54:133–46.

Article  CAS  PubMed  Google Scholar 

Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7:971–81.

Article  CAS  PubMed  Google Scholar 

Davies KA, Tanzer MC, Griffin MDW, Mok YF, Young SN, Qin R, et al. The brace helices of MLKL mediate interdomain communication and oligomerisation to regulate cell death by necroptosis. Cell Death Differ. 2018;25:1567–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodriguez DA, Weinlich RA-O, Brown S, Guy C, Fitzgerald P, Dillon CP, et al. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. 2016;23:76–88.

Article  CAS  PubMed  Google Scholar 

Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi RKS, Banoth B, et al. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:237.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee S, Karki RA-O, Wang Y, Nguyen LN, Kalathur RA-O, Kanneganti TA-O. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 2021;597:415–9.

留言 (0)

沒有登入
gif