Cleavage and polyadenylation machinery as a novel targetable vulnerability for human cancer

Shi Y, Giammartino DCD, Taylor D, Sarkeshik A, Rice WJ, Yates JR, et al. Molecular Architecture of the Human Pre-mRNA 3′ Processing Complex. Mol Cell. 2009;33:365–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitschka S, Mayr C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat Rev Mol Cell Biol. 2022;23:779–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gruber AJ, Zavolan M. Alternative cleavage and polyadenylation in health and disease. Nat Rev Genet. 2019;20:599–614.

Article  CAS  PubMed  Google Scholar 

Mayr C, Bartel DP. Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He XJ, Zhang Q, Ma LP, Li N, Chang XH, Zhang YJ. Aberrant Alternative Polyadenylation is Responsible for Survivin Up-regulation in Ovarian Cancer. Chin Med J. 2016;129:1140–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cacioppo R, Akman HB, Tuncer T, Erson-Bensan AE, Lindon C. Differential translation of mRNA isoforms underlies oncogenic activation of cell cycle kinase Aurora A. eLife. 2023;12:RP87253.

Lembo A, Cunto FD, Provero P. Shortening of 3′UTRs Correlates with Poor Prognosis in Breast and Lung Cancer. PLOS One. 2012;7:e31129.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan F, Hankey W, Wagner EJ, Li W, Wang Q. Alternative polyadenylation of mRNA and its role in cancer. Genes Dis. 2021;8:61–72.

Article  CAS  PubMed  Google Scholar 

Ding J, Su Y, Liu Y, Xu Y, Yang D, Wang X, et al. The role of CSTF2 in cancer: from technology to clinical application. Cell Cycle. 2024;0:1–15.

Google Scholar 

Ning Y, Liu W, Guan X, Xie X, Zhang Y. CPSF3 is a promising prognostic biomarker and predicts recurrence of non-small cell lung cancer. Oncol Lett. 2019;18:2835–44.

CAS  PubMed  PubMed Central  Google Scholar 

Chen W, Guo W, Li M, Shi D, Tian Y, Li Z, et al. Upregulation of Cleavage and Polyadenylation Specific Factor 4 in Lung Adenocarcinoma and Its Critical Role for Cancer Cell Survival and Proliferation. PLOS One. 2013;8:e82728.

Article  PubMed  PubMed Central  Google Scholar 

Li B, Cai Y, Chen C, Li G, Zhang M, Lu Z, et al. Genetic Variants That Impact Alternative Polyadenylation in Cancer Represent Candidate Causal Risk Loci. Cancer Res. 2023;83:3650–66.

Article  CAS  PubMed  Google Scholar 

Huang XD, Chen YW, Tian L, Du L, Cheng XC, Lu YX, et al. NUDT21 interacts with NDUFS2 to activate the PI3K/AKT pathway and promotes pancreatic cancer pathogenesis. J Cancer Res Clin Oncol. 2024;150:8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xing Y, Chen L, Gu H, Yang C, Zhao J, Chen Z, et al. Downregulation of NUDT21 contributes to cervical cancer progression through alternative polyadenylation. Oncogene. 2021;40:2051–64.

Article  CAS  PubMed  Google Scholar 

Cui Y, Wang L, Ding Q, Shin J, Cassel J, Liu Q, et al. Elevated pre-mRNA 3′ end processing activity in cancer cells renders vulnerability to inhibition of cleavage and polyadenylation. Nat Commun. 2023;14:4480.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ross NT, Lohmann F, Carbonneau S, Fazal A, Weihofen WA, Gleim S, et al. CPSF3-dependent pre-mRNA processing as a druggable node in AML and Ewing’s sarcoma. Nat Chem Biol. 2020;16:50–9.

Article  CAS  PubMed  Google Scholar 

Author Correction: CPSF3-dependent pre-mRNA processing as a druggable node in AML and Ewing’s sarcoma. Nat Chem Biol. Available from: https://www.nature.com/articles/s41589-020-0508-y

Liu L, Yu AM, Wang X, Soles LV, Teng X, Chen Y, et al. The anticancer compound JTE-607 reveals hidden sequence specificity of the mRNA 3’ processing machinery. Nat Struct Mol Biol. 2023;30:1947–57.

Article  CAS  PubMed  Google Scholar 

Shen P, Ye K, Xiang H, Zhang Z, He Q, Zhang X, et al. Therapeutic targeting of CPSF3-dependent transcriptional termination in ovarian cancer. Sci Adv. 2023;9:eadj0123.

Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature. 2019;568:511–6.

Article  CAS  PubMed  Google Scholar 

Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a Cancer Dependency Map. Cell. 2017;170:564–576.e16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE, et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 2011;12:245–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pereira-Castro I, Moreira A. On the function and relevance of alternative 3′-UTRs in gene expression regulation. WIREs RNA. 2021;12:e1653.

Article  CAS  PubMed  Google Scholar 

Cheng LC, Zheng D, Baljinnyam E, Sun F, Ogami K, Yeung PL, et al. Widespread transcript shortening through alternative polyadenylation in secretory cell differentiation. Nat Commun. 2020;11:3182.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang F, Chen L, Li W, Yang C, Xiong M, Zhou M, et al. Lengthening of 3′ Untranslated Regions of mRNAs by Alternative Polyadenylation Is Associated With Tumor Progression and Poor Prognosis of Clear Cell Renal Cell Carcinoma. Lab Invest. 2023;103:100125.

Article  PubMed  Google Scholar 

Dioken DN, Ozgul I, Koksal Bicakci G, Gol K, Can T, Erson-Bensan AE. Differential expression of mRNA 3′-end isoforms in cervical and ovarian cancers. Heliyon. 2023;9:e20035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gabel AM, Belleville AE, Thomas JD, McKellar SA, Nicholas TR, Banjo T, et al. Multiplexed screening reveals how cancer-specific alternative polyadenylation shapes tumor growth in vivo. Nat Commun. 2024;15:959.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.

Article  PubMed  PubMed Central  Google Scholar 

Zhang B, Liu Y, Liu D, Yang L. Targeting cleavage and polyadenylation specific factor 1 via shRNA inhibits cell proliferation in human ovarian cancer. J Biosci. 2017;42:417–25.

Article  CAS  PubMed  Google Scholar 

di Micco P, Antolin AA, Mitsopoulos C, Villasclaras-Fernandez E, Sanfelice D, Dolciami D, et al. canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res. 2022;51:D1212–9.

PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif