CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy

Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21:137–48.

Article  CAS  PubMed  Google Scholar 

Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:1–18.

Article  Google Scholar 

Baulu E, Gardet C, Chuvin N, Depil S. TCR-engineered T cell therapy in solid tumors: state of the art and perspectives. Sci Adv. 2023;9:eadf3700.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemoine J, Ruella M, Houot R. Born to survive: how cancer cells resist CAR T cell therapy. J Hematol Oncol. 2021;14:199.

Article  PubMed  PubMed Central  Google Scholar 

Rodrigo S, Senasinghe K, Quazi S. Molecular and therapeutic effect of CRISPR in treating cancer. Med Oncol. 2023;40:81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomasik J, Jasiński M, Basak GW. Next generations of CAR-T cells - new therapeutic opportunities in hematology? Front Immunol. 2022;13:1034707.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu X, Li Q, Zhu X. Mechanisms of CAR T cell exhaustion and current counteraction strategies. Front Cell Dev Biol. 2022;10:1034257.

Article  PubMed  PubMed Central  Google Scholar 

Ren P, Zhang C, Li W, Wang X, Liang A, Yang G, et al. CAR-T therapy in clinical practice: technical advances and current challenges. Adv Biol (Weinh). 2022;6:e2101262.

Article  PubMed  Google Scholar 

Verma NK, Wong BHS, Poh ZS, Udayakumar A, Verma R, Goh RKJ, et al. Obstacles for T-lymphocytes in the tumour microenvironment: therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine. 2022;83:104216.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Young RM, Engel NW, Uslu U, Wellhausen N, June CH. Next-Generation CAR T-cell therapies. Cancer Discov. 2022;12:1625–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen C, Zhang Z, Zhang Y. Chimeric antigen receptor T cell exhaustion during treatment for hematological malignancies. Biomed Res Int. 2020;2020:8765028.

Article  PubMed  PubMed Central  Google Scholar 

McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 2019;37:457–95.

Article  CAS  PubMed  Google Scholar 

Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell. 2017;31:311–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng H, Ma K, Zhang L, Li G. The tumor microenvironment shapes the molecular characteristics of exhausted CD8+ T cells. Cancer Lett. 2021;506:55–66.

Article  CAS  PubMed  Google Scholar 

Gumber D, Wang LD. Improving CAR-T immunotherapy: overcoming the challenges of T cell exhaustion. EBioMedicine. 2022;77:103941.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bucks CM, Norton JA, Boesteanu AC, Mueller YM, Katsikis PD. Chronic antigen stimulation alone Is sufficient to drive CD8+ T cell exhaustion. J Immunol. 2009;182:6697–708.

Article  CAS  PubMed  Google Scholar 

Yin Z, Bai L, Li W, Zeng T, Tian H, Cui J. Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic strategy. J Exp Clin Cancer Res. 2019;38:403.

Article  PubMed  PubMed Central  Google Scholar 

Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell. 2020;78:1019–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng HY, Lucavs J, Ballard D, Das JK, Kumar A, Wang L, et al. Metabolic reprogramming and reactive oxygen species in T cell immunity. Front Immunol. 2021;12:652687.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watson MJ, Delgoffe GM. Fighting in a wasteland: deleterious metabolites and antitumor immunity. J Clin Invest. 2022;132:e148549.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Liu S, Zhang B, Qiao L, Zhang Y, Zhang Y. T Cell dysfunction and exhaustion in cancer. Front Cell Dev Biol. 2020. https://doi.org/10.3389/fcell.2020.00017.

Wang S, Wu J, Shen H, Wang J. The prognostic value of IDO expression in solid tumors: a systematic review and meta-analysis. BMC Cancer. 2020;20:471.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev. 2017;276:121–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang L, Liu K, Liu C, Wang X, Ma W, Xu W, et al. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front Immunol. 2022;13:979116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soriano-Baguet L, Brenner D. Metabolism and epigenetics at the heart of T cell function. Trends Immunol. 2023;44:231–44.

Article  CAS  PubMed  Google Scholar 

Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.

Article  CAS  PubMed  Google Scholar 

Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, et al. Defining « T cell exhaustion ». Nat Rev Immunol. 2019;19:665–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal. 2017;15:1.

Article  PubMed  PubMed Central  Google Scholar 

Fuertes Marraco SA, Neubert NJ, Verdeil G, Speiser DE. Inhibitory receptors beyond T Cell Exhaustion. Front Immunol. 2015;6:310.

Article  PubMed  PubMed Central  Google Scholar 

Huang Y, Si X, Shao M, Teng X, Xiao G, Huang H. Rewiring mitochondrial metabolism to counteract exhaustion of CAR-T cells. J Hematol Oncol. 2022;15:38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pereira RM, Hogan PG, Rao A, Martinez GJ. Transcriptional and epigenetic regulation of T cell hyporesponsiveness. J Leukoc Biol. 2017;102:601–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seo H, Chen J, González-Avalos E, Samaniego-Castruita D, Das A, Wang YH, et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc Natl Acad Sci USA. 2019;116:12410–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chi X, Luo S, Ye P, Hwang WL, Cha JH, Yan X, et al. T-cell exhaustion and stemness in antitumor immunity: characteristics, mechanisms, and implications. Front Immunol. 2023;14:1104771.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujiwara Y, Kato T, Hasegawa F, Sunahara M, Tsurumaki Y. The past, present, and future of clinically applied chimeric antigen receptor-T-cell therapy. Pharm (Basel). 2022;15:207.

CAS  Google Scholar 

Watanabe N, Mo F, McKenna MK. Impact of manufacturing procedures on CAR T cell functionality. Front Immunol. 2022;13:876339.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Xu Y, Dang X, Zhu Z, Qian W, Liang A, et al. Challenges and optimal strategies of CAR T therapy for hematological malignancies. Chin Med J (Engl). 2023;136:269–79.

Article  CAS  PubMed  Google Scholar 

Zhou Z, Tao C, Li J, Tang JCO, Chan ASC, Zhou Y. Chimeric antigen receptor T cells applied to solid tumors. Front Immunol. 2022;13:984864.

Article  CAS 

留言 (0)

沒有登入
gif