The intracellular visualization of exogenous DNA in fluorescence microscopy

Fay N, Panté N. Nuclear entry of DNA viruses. Front Microbiol. 2015. https://doi.org/10.3389/fmicb.2015.00467.

Article  PubMed  PubMed Central  Google Scholar 

Wertheimer AI. The world’s priciest medicine. J Pharm Health Serv Res. 2019. https://doi.org/10.1111/jphs.12318.

Article  Google Scholar 

Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J. 2021. https://doi.org/10.1208/s12248-021-00608-7.

Article  PubMed  Google Scholar 

Pringle IA, Hyde SC, Gill DR. Non-viral vectors in cystic fibrosis gene therapy: recent developments and future prospects. Expert Opin Biol Ther. 2009. https://doi.org/10.1517/14712590903055029.

Article  PubMed  Google Scholar 

Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995. https://doi.org/10.1073/pnas.92.16.7297.

Article  PubMed  PubMed Central  Google Scholar 

Casper J, Schenk SH, Parhizkar E, Detampel P, Dehshahri A, Huwyler J. Polyethylenimine (PEI) in gene therapy: current status and clinical applications. J Control Release. 2023. https://doi.org/10.1016/j.jconrel.2023.09.001.

Article  PubMed  Google Scholar 

Damen M, Groenen AJJ, van Dongen SFM, Nolte RJM, Scholte BJ, Feiters MC. Transfection by cationic gemini lipids and surfactants. Med Chem Commun. 2018. https://doi.org/10.1039/C8MD00249E.

Article  Google Scholar 

Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D. Lipid-based DNA therapeutics: hallmarks of non-viral gene delivery. ACS Nano. 2019. https://doi.org/10.1021/acsnano.8b07858.

Article  PubMed  Google Scholar 

Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, Crommelin DJA. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm. 2021. https://doi.org/10.1016/j.ijpharm.2021.120586.

Article  PubMed  PubMed Central  Google Scholar 

Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles─from liposomes to mrna vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021. https://doi.org/10.1021/acsnano.1c04996.

Article  PubMed  Google Scholar 

Uherek C, Wels W. DNA-carrier proteins for targeted gene delivery. Adv Drug Deliv Rev. 2000. https://doi.org/10.1016/s0169-409x(00)00092-2.

Article  PubMed  Google Scholar 

Burger M, Kaelin S, Leroux J-C. The TFAMoplex—Conversion of the mitochondrial transcription factor A into a DNA transfection agent. Adv Sci. 2022. https://doi.org/10.1002/advs.202104987.

Article  Google Scholar 

Ding Y, Jiang Z, Saha K, Kim CS, Kim ST, Landis RF, Rotello VM. Gold nanoparticles for nucleic acid delivery. Mol Ther. 2014. https://doi.org/10.1038/mt.2014.30.

Article  PubMed  PubMed Central  Google Scholar 

Loh XJ, Lee T-C, Dou Q, Deen GR. Utilising inorganic nanocarriers for gene delivery. Biomat Sci. 2016. https://doi.org/10.1039/C5BM00277J.

Article  Google Scholar 

Vercauteren D, Rejman J, Martens TF, Demeester J, De Smedt SC, Braeckmans K. On the cellular processing of non-viral nanomedicines for nucleic acid delivery: mechanisms and methods. J Control Release. 2012. https://doi.org/10.1016/j.jconrel.2012.05.020.

Article  PubMed  Google Scholar 

Ogura T. Direct observation of unstained biological samples in water using newly developed impedance scanning electron microscopy. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0221296.

Article  PubMed  PubMed Central  Google Scholar 

Haraguchi T, Kojidani T, Koujin T, Shimi T, Osakada H, Mori C, Yamamoto A, Hiraoka Y. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J Cell Sci. 2008. https://doi.org/10.1242/jcs.033597.

Article  PubMed  Google Scholar 

van der Beek J, de Heus C, Liv N, Klumperman J. Quantitative correlative microscopy reveals the ultrastructural distribution of endogenous endosomal proteins. J Cell Biol. 2021. https://doi.org/10.1083/jcb.202106044.

Article  PubMed  PubMed Central  Google Scholar 

Haraguchi T, Koujin T, Shindo T, Bilir Ş, Osakada H, Nishimura K, Hirano Y, Asakawa H, Mori C, Kobayashi S, et al. Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Commun Biol. 2022. https://doi.org/10.1038/s42003-022-03021-8.

Article  PubMed  PubMed Central  Google Scholar 

van den Dries K, Fransen J, Cambi A. Fluorescence CLEM in biology: historic developments and current super-resolution applications. FEBS Lett. 2022. https://doi.org/10.1002/1873-3468.14421.

Article  PubMed  Google Scholar 

Rombouts K, Braeckmans K, Remaut K. Fluorescent labeling of plasmid DNA and mRNA: gains and losses of current labeling strategies. Bioconjug Chem. 2016. https://doi.org/10.1021/acs.bioconjchem.5b00579.

Article  PubMed  Google Scholar 

Gozzetti A, Le Beau MM. Fluorescence in situ hybridization: uses and limitations. Semin Hematol. 2000. https://doi.org/10.1016/s0037-1963(00)90013-1.

Article  PubMed  Google Scholar 

Friend DS, Papahadjopoulos D, Debs RJ. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim Biophys Acta. 1996. https://doi.org/10.1016/0005-2736(95)00219-7.

Article  PubMed  Google Scholar 

Zuhorn IS, Kalicharan R, Hoekstra D. Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J Biol Chem. 2002. https://doi.org/10.1074/jbc.M111257200.

Article  PubMed  Google Scholar 

Ellinger I, Pietschmann P. Endocytosis in health and disease—a thematic issue dedicated to Renate Fuchs. Wien Med Wochenschr. 2016. https://doi.org/10.1007/s10354-016-0454-1.

Article  PubMed  Google Scholar 

Miller CR, Bondurant B, McLean SD, McGovern KA, O’Brien DF. Liposome−cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry. 1998. https://doi.org/10.1021/bi980096y.

Article  PubMed  Google Scholar 

Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006. https://doi.org/10.1124/pr.58.1.8.

Article  PubMed  Google Scholar 

Xiang S, Tong H, Shi Q, Fernandes JC, Jin T, Dai K, Zhang X. Uptake mechanisms of non-viral gene delivery. J Control Release. 2012. https://doi.org/10.1016/j.jconrel.2011.09.093.

Article  PubMed  Google Scholar 

Kalafatovic D, Giralt E. Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity. Molecules. 2017. https://doi.org/10.3390/molecules22111929.

Article  PubMed  PubMed Central  Google Scholar 

Winkeljann B, Keul DC, Merkel OM. Engineering poly- and micelleplexes for nucleic acid delivery – A reflection on their endosomal escape. J Control Release. 2023. https://doi.org/10.1016/j.jconrel.2022.12.008.

Article  PubMed  PubMed Central  Google Scholar 

Rehman Zu, Hoekstra D, Zuhorn IS. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis. ACS Nano. 2013. https://doi.org/10.1021/nn3049494.

Article  Google Scholar 

Vermeulen LMP, De Smedt SC, Remaut K, Braeckmans K. The proton sponge hypothesis: fable or fact? Eur J Pharm Biopharm. 2018. https://doi.org/10.1016/j.ejpb.2018.05.034.

Article  PubMed  Google Scholar 

Vercauteren D, Deschout H, Remaut K, Engbersen JFJ, Jones AT, Demeester J, De Smedt SC, Braeckmans K. Dynamic colocalization microscopy to characterize intracellular trafficking of nanomedicines. ACS Nano. 2011. https://doi.org/10.1021/nn2020858.

Article  PubMed  Google Scholar 

Majzoub RN, Wonder E, Ewert KK, Kotamraju VR, Teesalu T, Safinya CR. Rab11 and lysotracker markers reveal correlation between endosomal pathways and transfection efficiency of surface-functionalized cationic liposome–DNA nanoparticles. J Phys Chem. 2016. https://doi.org/10.1021/acs.jpcb.6b04441.

Article  Google Scholar 

Bai H, Lester GMS, Petishnok LC, Dean DA. Cytoplasmic transport and nuclear import of plasmid DNA. Biosci Rep. 2017. https://doi.org/10.1042/BSR20160616.

Article  PubMed  PubMed Central  Google Scholar 

Sahay G, Querbes W, Alabi C, Eltoukhy A, Sarkar S, Zurenko C, Karagiannis E, Love K, Chen D, Zoncu R, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol. 2013. https://doi.org/10.1038/nbt.2614.

Article  PubMed  PubMed Central  Google Scholar 

Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, Beatty B, Squire J, O’Brodovich H, Lukacs GL. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 1999. https://doi.org/10.1038/sj.gt.3300867.

Article  PubMed  Google Scholar 

Sasaki A, Kinjo M. Monitoring intracellular degradation of exogenous DNA using diffusion properties. J Control Release. 2010. https://doi.org/10.1016/j.jconrel.2009.12.013.

Article 

留言 (0)

沒有登入
gif