Anti-lung cancer synergy of low-dose doxorubicin and PD-L1 blocker co-delivered via mild photothermia-responsive black phosphorus

Sarode P, Schaefer MB, Grimminger F, Seeger W, Savai RJFIO. Macrophage and tumor cell cross-talk is fundamental for lung tumor progression: we need to talk. Front Oncol. 2020;10:324.

Article  PubMed  PubMed Central  Google Scholar 

Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L, Sloan AE, McLendon RE, Li X, Rich JN. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. 2014;6:1670–90.

Google Scholar 

Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E, Kzhyshkowska J. Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers. Front Oncol. 2020;10:566511.

Article  PubMed  PubMed Central  Google Scholar 

He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30:660–9.

Article  PubMed  PubMed Central  Google Scholar 

Sharma P, Allison JPJS. The future of immune checkpoint therapy. 2015;348:56–61.

CAS  Google Scholar 

Toor SM, Nair VS, Decock J, Elkord E. Immune checkpoints in the tumor microenvironment. In: Seminars in cancer biology. Elsevier; 2020. p. 1–12.

Google Scholar 

Dong Y, Sun Q, Zhang X. PD-1 and its ligands are important immune checkpoints in cancer. Oncotarger. 2017;8:2171.

Article  Google Scholar 

Jiang Y, Chen M, Nie H, Yuan YJHV. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother. 2019;15:1111–22.

Article  PubMed  PubMed Central  Google Scholar 

Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology. 2012;1(8):1223–5.

Article  PubMed  PubMed Central  Google Scholar 

Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruan J, Ouyang M, Zhang W, Luo Y, Zhou D. Oncology, The effect of PD-1 expression on tumor-associated macrophage in T cell lymphoma. Clin Transl Oncol. 2021;23:1134–41.

Article  CAS  PubMed  Google Scholar 

Kono Y, Saito H, Miyauchi W, Shimizu S, Murakami Y, Shishido Y, Miyatani K, Matsunaga T, Fukumoto Y, Nakayama Y. Increased PD-1-positive macrophages in the tissue of gastric cancer are closely associated with poor prognosis in gastric cancer patients. BMC Cancer. 2020;20:1–9.

Article  Google Scholar 

Dhupkar P, Gordon N, Stewart J, Kleinerman ES. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 2018;7:2654–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao G, Latha K, Ott M, Sabbagh A, Marisetty A, Ling X, Zamler D, Doucette TA, Yang Y, Kong LY. Anti–PD-1 induces M1 polarization in the glioma microenvironment and exerts therapeutic efficacy in the absence of CD8 cytotoxic T cells. Clin Cancer Res. 2020;26:4699–712.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu D, Ni Z, Liu X, Feng S, Dong X, Shi X, Zhai J, Mai S, Jiang J, Wang Z. Beyond T cells: understanding the role of PD-1/PD-L1 in tumor-associated macrophages. J Immunol Res. 2019;2019.

Liu Y, Zugazagoitia J, Ahmed FS, Henick BS, Gettinger SN, Herbst RS, Schalper KA, Rimm DL. Immune cell PD-L1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy. Clin Cancer Res. 2020;26:970–7.

Article  CAS  PubMed  Google Scholar 

Chen L, Cao MF, Xiao JF, Ma QH, Zhang H, Cai RL, Miao JY, Wang WY, Zhang H, Luo M, Ping YF. Stromal PD-1+ tumor-associated macrophages predict poor prognosis in lung adenocarcinoma. Hum Pathol. 2020;97:68–79.

Article  CAS  PubMed  Google Scholar 

Zhang W, Liu Y, Yan Z, Yang H, Sun W, Yao Y, Chen Y, Jiang R. IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. JITC. 2020;8(1).

Fang W, Zhou T, Shi H, Yao M, Zhang D, Qian H, Zeng Q, Wang Y, Jin F, Chai C, Chen T. Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8+ T cell exclusion. J Exp Clin Cancer Res. 2021;40:1–11.

Article  Google Scholar 

Loeuillard E, Yang J, Buckarma E, Wang J, Liu Y, Conboy C, Pavelko KD, Li Y, O’Brien D, Wang C. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. JCI. 2020;130:5380–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCord R, Bolen CR, Koeppen H, Kadel EE III, Oestergaard MZ, Nielsen T, Sehn LH, Venstrom JM. PD-L1 and tumor-associated macrophages in de novo DLBCL. Blood Adv. 2019;3:531–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. PNAS. 2017;114:1117–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartley GP, Chow L, Ammons DT, Wheat WH, Dow SW. Programmed cell death ligand 1 (PD-L1) signaling regulates macrophage proliferation and activation. Cancer Immunol Res. 2018;6:1260–73.

Article  CAS  PubMed  Google Scholar 

Zhu Z, Zhang H, Chen B, Liu X, Zhang S, Zong Z, Gao M. PD-L1-mediated immunosuppression in glioblastoma is associated with the infiltration and M2-polarization of tumor-associated macrophages. Front Immunol. 2020;11:588552.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shinchi Y, Ishizuka S, Komohara Y, Matsubara E, Mito R, Pan C, Yoshii D, Yonemitsu K, Fujiwara Y, Ikeda K. The expression of PD-1 ligand 1 on macrophages and its clinical impacts and mechanisms in lung adenocarcinoma. CII. 2022;71(2022):2645–61.

CAS  PubMed  Google Scholar 

Chen S, Crabill GA, Pritchard TS, McMiller TL, Wei P, Pardoll DM, Pan F, Topalian SL. Mechanisms regulating PD-L1 expression on tumor and immune cells. JITC. 2019;7:1–12.

Google Scholar 

Vegliante MC, Mazzara S, Zaccaria GM, De Summa S, Esposito F, Melle F, Motta G, Sapienza MR, Opinto G, Volpe G. NR1H3 (LXRα) is associated with pro-inflammatory macrophages, predicts survival and suggests potential therapeutic rationales in diffuse large b-cell lymphoma. Hematol Oncol. 2022;40:864–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao R, Wan Q, Wang Y, Wu Y, Xiao S, Li Q, Shen X, Zhuang W, Zhou Y, Xia L. M1-like TAMs are required for the efficacy of PD-L1/PD-1 blockades in gastric cancer. Oncoimmunology. 2021;10:1862520.

Article  Google Scholar 

Sun N-Y, Chen Y-L, Wu W-Y, Lin H-W, Chiang Y-C, Chang C-F, Tai Y-J, Hsu H-C, Chen CA, Sun WZ. Blockade of PD-L1 enhances cancer immunotherapy by regulating dendritic cell maturation and macrophage polarization. Cancer. 2019;11:1400.

Article  CAS  Google Scholar 

Xu H-Z, Li T-F, Wang C, Ma Y, Liu Y, Zheng M-Y, Liu Z-J-Y, Chen J-B, Li K, Sun SK. Synergy of nanodiamond–doxorubicin conjugates and PD-L1 blockade effectively turns tumor-associated macrophages against tumor cells. J Nanobiotechnology. 2021;19:1–24.

Article  CAS  Google Scholar 

Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021;139:111708.

Article  CAS  PubMed  Google Scholar 

Damodar G, Smitha T, Gopinath S, Vijayakumar S, Rao YA. An evaluation of hepatotoxicity in breast cancer patients receiving injection Doxorubicin. Ann Med Res. 2014;4:74–9.

CAS  Google Scholar 

Barakat BM, Ahmed HI, Bahr HI, Elbahaie M. Protective effect of boswellic acids against doxorubicin-induced hepatotoxicity: impact on Nrf2/HO-1 defense pathway. Oxidative medicine and cellular longevity. 2018;2018.

Su C, Wang H, Liu Y, Guo Q, Zhang L, Li J, Zhou W, Yan Y, Zhou X, Zhang J. Adverse effects of anti-PD-1/PD-L1 therapy in non-small cell lung cancer. Front Oncol. 2020;10:1821.

Article  Google Scholar 

Hu Y-B, Zhang Q, Li H-J, Michot JM, Liu H-B, Zhan P, Lv T-F, Song Y. Evaluation of rare but severe immune related adverse effects in PD-1 and PD-L1 inhibitors in non-small cell lung cancer: a meta-analysis. TLCR. 2017;6:S8.

PubMed  PubMed Central  Google Scholar 

Zhou X, Yao Z, Bai H, Duan J, Wang Z, Wang X, Zhang X, Xu J, Fei K, Zhang Z. Treatment-related adverse events of PD-1 and PD-L1 inhibitor-based combination therapies in clinical trials: a systematic review and meta-analysis. Lancet Oncol. 2021;22:1265–74.

Article  CAS  PubMed  Google Scholar 

Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41–8.

Article  CAS  PubMed  Google Scholar 

Sangomla S, Saifi MA, Khurana A, Godugu C. Biology nanoceria ameliorates doxorubicin induced cardiotoxicity: Possible mitigation via reduction of oxidative stress and inflammation. JTEMIN. 2018;47:53–62.

CAS  Google Scholar 

Kong C-Y, Guo Z, Song P, Zhang X, Yuan Y-P, Teng T, Yan L, Tang Q-Z. Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: oxidative stress and cell death. Int J Biol Sci. 2022;18:760.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif