Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes

Abbasi A, Joswig-Jones CA, Jones JP (2020) Site-directed mutagenesis at the MoCo site of the human aldehyde oxidase: interrogating the kinetic differences between human and cynomolgus monkey. Drug Metab Dispos 48:1364–1371. https://doi.org/10.1124/dmd.120.000187

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amano T, Fukami T, Ogiso T, Hirose D, Jones JP, Taniguchi T, Nakajima M (2018) Identification of enzymes responsible for dantrolene metabolism in the human liver: A clue to uncover the cause of liver injury. Biochem Pharmacol 151:69–78. https://doi.org/10.1016/j.bcp.2018.03.002

Article  CAS  PubMed  Google Scholar 

Apak TI, Duffel MW (2004) Interactions of the stereoisomers of a-hydroxytamoxifen with human hydroxysteroid sulfotransferase SULT2A1 and rat hydroxysteroid sulfotransferase STa. Drug Metab Dispos 32:1501–1508. https://doi.org/10.1124/dmd.104.000919

Article  CAS  PubMed  Google Scholar 

Avent KM, DeVoss JJ, Gillam EMJ (2006) Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites. Chem Res Toxicol 19:914–920. https://doi.org/10.1021/tx0600090

Article  CAS  PubMed  Google Scholar 

Baer BR, Wienkers LC, Rock DA (2007) Time-dependent inactivation of P450 3A4e by raloxifene; identification of Cys239 as the site of apoprotein alkylation. Chem Res Toxycol 20:954–964. https://doi.org/10.1021/tx7000337e

Article  CAS  Google Scholar 

Bai J, Cederbaum AI (2004) Adenovirus-mediated overexpression of CYP2E1 increases sensitivity of HepG2 cells to acetaminophen induced cytotoxicity. Mol Cell Biochem 262:165–176. https://doi.org/10.1023/B:MCBI.0000038232.61760.9e

Article  CAS  PubMed  Google Scholar 

Berson A, Wolf C, Chachaty C, Fisch C, Fau D Eugene D, Loeper J, Gauthier JC, Beaune P, Pompon D (1993) Metabolic activation of the nitroaromatic antiandrogen flutamide by rat and human cytochromes P-450, including forms belonging to the 3A and 1A subfamilies. J Pharmacol Exp Ther 265:366–372. https://jpet.aspetjournals.org/content/265/1/366.long. Accessed Dec 2023

Beverage JN, Sissung TM, Sion AM, Danesi R, Figg WD (2007) CYP2D6 polymorphisms and the impact on tamoxifen therapy. J Pharmaceut Sci 96:2224–2231. https://doi.org/10.1002/jps.20892

Article  CAS  Google Scholar 

Bezerra LS, Santos-Veloso MAO, Bezerra Junior NDS, Fonseca LCD, Sales WLA (2018) Impacts of cytochrome P450 2D6 (CYP2D6) genetic polymorphism in tamoxifen therapy for breast cancer. Rev Bras Ginecol Obstet 40:794–799. https://doi.org/10.1055/s-0038-1676303

Article  PubMed  PubMed Central  Google Scholar 

Boerma JS, Vermeulen NPE, Commandeur JNM (2014) One-electron oxidation of diclofenac by human cytochrome P450s as a potential bioactivation mechanism for the formation of 2′-(glutathion-S-yl)-deschloro-diclofenac. Chem-Biol Interact 207:32–40. https://doi.org/10.1016/j.cbi.2013.11.001

Article  CAS  PubMed  Google Scholar 

Bohnenstengel F, Hofmann U, Eichelbaum M, Kroemer HK (1996) Characterization of the cytochrome P450 involved in side-chain oxidation of cyclophosphamide in humans. Eur J Clin Pharmacol 51:297–301. https://doi.org/10.1007/s002280050201

Article  CAS  PubMed  Google Scholar 

Boocock DJ, Brown K, Gibbs AH, Sanchez E, Turteltaub KW, White IN (2002) Identification of human CYP forms involved in the activation of tamoxifen and irreversible binding to DNA. Carcinogenesis 23:1897–1901. https://doi.org/10.1093/carcin/23.11.1897

Article  CAS  PubMed  Google Scholar 

Borges S, Desta Z, Li L et al (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: Implication for optimization of breast cancer treatment. Clin Pharmacol Therapeut 80:61–74. https://doi.org/10.1016/j.clpt.2006.03.013

Article  CAS  Google Scholar 

Bort R, Macé K, Boobis A, Gómez-Lecón MJ, Pfeifer A, Castell J (1999) Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways. Biochem Pharmacol 58:787–796. https://doi.org/10.1016/S0006-2952(99)00167-7

Article  CAS  PubMed  Google Scholar 

Cardillo C. Kilcoyne CM, Cannon RO, 3rd, Quyyumi AA, Panza JA (1997). Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension (Dallas, Tex. ), 30(1 Pt 1), 57–63. https://doi.org/10.1161/01.hyp.30.1.57

Cashman JR, Xiong YN, Xu L, Janowsky A (1999) N-Oxygenation of amphetamine and methamphetamine by the human flavin-containing monooxygenase (form 3): Role in bioactivation and detoxication. J Pharmacol Exp Ther 288:1251–1260. https://jpet.aspetjournals.org/content/288/3/1251.long

Chang TK, Weber GF, Crespi CL, Waxman DJ (1993) Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 53:5629–5637. https://aacrjournals.org/cancerres/article/53/23/5629/499502/

Chang TK, Yu L, Maurel P, Waxman DJ (1997) Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res 57:1946–1954. PMID: 9157990. https://aacrjournals.org/cancerres/article/57/10/1946/503144/

Charneira C, Godinho ALA, Oliveira MC, Pereira SA, Monteiro EC, Marques MM, Artunes AMM (2011) Reactive aldehyde metabolites from the anti-HIV drug abacavir: Amino acid adducts as possible factors in abacavir toxicity. Chem Res Toxicol 24:2129–2141. https://doi.org/10.1021/tx200337b

Article  CAS  PubMed  Google Scholar 

Chen J (1998) Enhanced levels of several mitochondrial mRNA transcripts and mitochondrial superoxide production during ethinyl estradiol-induced hepatocarcinogenesis and after estrogen treatment of HepG2 cells. Carcinogenesis 19:2187–2193. https://doi.org/10.1093/carcin/19.12.2187

Article  CAS  PubMed  Google Scholar 

Chen W, Koenigs LL, Thompson SJ, Peter RM, Rettie AE, Trager WF, Nelson SD (1998) Oxidation of acetaminophen to its toxic quinone imine and nontoxic catechol metabolites by baculovirus-expressed and purified human cytochromes P450 2E1 and 2A6. Chem Res Toxicol 11:295–301. https://doi.org/10.1021/tx9701687

Article  CAS  PubMed  Google Scholar 

Chen G, Yin S, Maiti S, Shao X (2002a) 4-Hydroxytamoxifen sulfation metabolism. J Biochem Mol Toxicol 16:279–285. https://doi.org/10.1002/jbt.10048

Article  CAS  PubMed  Google Scholar 

Chen Q, Ngui JS, Doss GA, Wang RW, Cai X, DiNinno FP, Lombardord TA, Hammond ML, Stearns RA, Evans DC, Baillie TA, Tang W (2002b) Cytochrome P450 3A4-mediated bioactivation of raloxifene: Irreversible enzyme inhibition and thiol adduct formation. Chem Res Toxicol 15:907–914. https://doi.org/10.1021/tx0200109

Article  CAS  PubMed  Google Scholar 

Chen C-S, Jounaidi Y, Waxman DJ (2005) Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochromes P450. Drug Metab Dispos 33:1261–1267. https://doi.org/10.1124/dmd.105.004788

Article  CAS  PubMed  Google Scholar 

Chen Q, Doss GA, Tung EC, Braun MP, Didolkar V, Strauss JR, Wang RM, Stearns RA, Evans DC, Baillie TA, Tang W (2006a) Evidence for the bioactivation of zomepirac and tolmetin by an oxidative pathway: identification of glutathione adducts in vitro in human liver microsomes and in vivo in rats. Drug Metab Dispos 34:145–151. https://doi.org/10.1124/dmd.105.004341

Article  CAS  PubMed  Google Scholar 

Chen C, Meng L, Ma X, Krausz KW, Pommier Y, Idle JR, Gonzalez FJ (2006b) Urinary metabolite profiling reveals CYP1A2-mediated metabolism of NSC686288 (aminoflavone). Journal Pharmacol Exp Ther 318:1330–1342. https://doi.org/10.1124/jpet.106.105213

Article  CAS  Google Scholar 

Cheung C, Yu A-M, Ward JM, Krausz KW, Akiyama TE, Feigenbaum L, Gonzalez FJ (2005) The CYP2E1-humanized transgenic mouse: role of CYP2E1 in acetaminophen hepatotoxicity. Drug Metab Dispos 33:449–457. https://doi.org/10.1124/dmd.104.002402

Article  CAS  PubMed  Google Scholar 

Cho H-J, Koh W-J, Ryu Y-J, Ki C-S, Nam M-H, Kim J-W, Lee S-Y (2007) Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis 87:551–556. https://doi.org/10.1016/j.tube.2007.05.012

Article  CAS  PubMed  Google Scholar 

Choughule KV, Joswig-Jones CA, Jones JP (2015) Interspecies differences in the metabolism of methotrexate: an insight into the active site differences between human and rabbit aldehyde oxidase. Biochem Pharmacol 96:288–295. https://doi.org/10.1016/j.bcp.2015.05.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chowdhury G, Murayama N, Okada Y, Uno Y, Shimizu M, Shibata N, Guengerich FP, Yamazaki H (2010) Human liver microsomal cytochrome P450 3A enzymes involved in thalidomide 5-hydroxylation and formation of a glutathione conjugate. Chem Res Toxicol 23:1018–1024. https://doi.org/10.1021/tx900367p

Article  CAS  PubMed  Google Scholar 

Chowdhury G, Shibata N, Yamazaki H, Guengerich FP (2014) Human cytochrome P450 oxidation of 5-hydroxythalidomide and pomalidomide, an amino analogue of thalidomide. Chem Res Toxicol 27:147–156. https://doi.org/10.1021/tx4004215

Article  CAS  PubMed  Google Scholar 

Chugh R, Wagner T, Griffith KA, Taylor JM, Thomas DG, Worden FP, Leu KM, Zalupski MM, Baker LH (2007) Assessment of ifosfamide pharmacokinetics, toxicity, and relation to CYP3A4 activity as measured by the erythromycin breath test in patients with sarcoma. Cancer 109:2315–2322. https://doi.org/10.1002/cncr.22669

Article  CAS  PubMed  Google Scholar 

Clarke TA, Waskell LA (2003) The metabolism of clopidogrel is catalyzed by human cytochrome P450 3A and is inhibited by atorvastatin. Drug Metab Dispos 31:53–59. https://doi.org/10.1124/dmd.31.1.53

Article  CAS  PubMed  Google Scholar 

Code EL, Crespi CL, Penman BW, Gonzalez FJ, Chang, Waxman DJ (1997) Human cytochrome P4502B6: interindividual hepatic expression, substrate specificity, and role in procarcinogen activation. Drug Metab Dispos 25:985–993. https://dmd.aspetjournals.org/content/25/8/985.long

Coller JK, Krebsfaenger N, Klein K, Wolbold R, Nüssler A, Neuhaus P, Zanger UM, Eichelbaum M, Mürdter TE (2004) Large interindividual variability in the in vitro formation of tamoxifen metabolites related to the development of genotoxicity. Brit J Clin Pharmacol 57:105–111. https://doi.org/10.1046/j.1365-2125.2003.01970.x

Article  CAS  Google Scholar 

Coulet M, Dacasto M, Eeckhoutte C, Larrieu G, Sfukaa J-F, Alvinerie M, Macé K, Pfeifer GP (1998) Identification of human and rabbit cytochromes P450 1A2 as major isoforms involved in thiabendazole 5-hydroxylation. Fund Clinical Pharmacol 12:225–235. https://doi.org/10.1111/j.1472-8206.1998.tb00946.x

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif