Weight regain, but not weight loss exacerbates hepatic fibrosis during multiple weight cycling events in male mice

Varkevisser RDM, van Stralen MM, Kroeze W, Ket JCF, Steenhuis IHM (2019) Determinants of weight loss maintenance: a systematic review. Obes Rev 20:171–211. https://doi.org/10.1111/obr.12772

Article  CAS  PubMed  Google Scholar 

Wing RR, Phelan S (2005) Long-term weight loss maintenance. Am J Clin Nutr 82:222S-225S. https://doi.org/10.1093/ajcn/82.1.222S

Article  CAS  PubMed  Google Scholar 

Mehta T, Smith DL Jr, Muhammad J, Casazza K (2014) Impact of weight cycling on risk of morbidity and mortality. Obes Rev 15:870–881. https://doi.org/10.1111/obr.12222

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rhee E-J (2017) Weight cycling and its cardiometabolic impact. J Obes Metab Syndr 26:237–242. https://doi.org/10.7570/jomes.2017.26.4.237

Article  PubMed  PubMed Central  Google Scholar 

Li X, Jiang L, Yang M, Wu Y-W, Sun J-Z (2018) Impact of weight cycling on CTRP3 expression, adipose tissue inflammation and insulin sensitivity in C57BL/6J mice. Exp Ther Med 16:2052–2059. https://doi.org/10.3892/etm.2018.6399

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fabbrini E, Sullivan S, Klein S (2010) Obesity and nonalcoholic fatty liver disease: biochemical, metabolic and clinical implications. Hepatology 51:679–689. https://doi.org/10.1002/hep.23280

Article  CAS  PubMed  Google Scholar 

Takaki A, Kawai D, Yamamoto K (2014) Molecular mechanisms and new treatment strategies for non-alcoholic steatohepatitis (NASH). Int J Mol Sci 15:7352–7379. https://doi.org/10.3390/ijms15057352

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nassir F, Ibdah JA (2014) Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci 15:8713–8742. https://doi.org/10.3390/ijms15058713

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim YN, Shin JH, Kyeong DS, Cho SY, Kim M-Y, Lim HJ et al (2021) Ahnak deficiency attenuates high-fat diet-induced fatty liver in mice through FGF21 induction. Exp Mol Med 53:468–482. https://doi.org/10.1038/s12276-021-00573-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsuru H, Osaka M, Hiraoka Y, Yoshida M (2020) HFD-induced hepatic lipid accumulation and inflammation are decreased in Factor D deficient mouse. Sci Rep 10:17593. https://doi.org/10.1038/s41598-020-74617-5

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Li R, Toan S, Zhou H (2020) Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging (Albany NY) 12:6467. https://doi.org/10.18632/aging.102972

Article  CAS  PubMed  Google Scholar 

Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQ-H et al (2021) Nonalcoholic fatty liver disease (NAFLD) Mitochondria as players and targets of therapies? Int J Mol Sci 22:5375. https://doi.org/10.3390/ijms22105375

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zamarron BF, Porsche CE, Luan D, Lucas HR, Mergian TA, Martinez-Santibanez G et al (2020) Weight regain in formerly obese mice hastens development of hepatic steatosis due to impaired adipose tissue function. Obesity 28:1086–1097. https://doi.org/10.1002/oby.22788

Article  CAS  PubMed  Google Scholar 

Kim M-S, Kim IY, Sung HR, Nam M, Kim YJ, Kyung DS et al (2019) Metabolic dysfunction following weight regain compared to initial weight gain in a high-fat diet-induced obese mouse model. J Nutr Biochem 69:44–52. https://doi.org/10.1016/j.jnutbio.2019.02.011

Article  CAS  PubMed  Google Scholar 

Takahashi Y, Fukusato T (2014) Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 20:15539–15548. https://doi.org/10.3748/wjg.v20.i42.15539

Article  PubMed  PubMed Central  Google Scholar 

Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321. https://doi.org/10.1002/hep.20701

Article  PubMed  Google Scholar 

Li Y, Xie Z, Song Q, Li J (2022) Mitochondria homeostasis: Biology and involvement in hepatic steatosis to NASH. Acta Pharmacol Sin 43:1141–1155. https://doi.org/10.1038/s41401-022-00864-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fromenty B, Roden M (2023) Mitochondrial alterations in fatty liver diseases. J Hepatol 78:415–429. https://doi.org/10.1016/j.jhep.2022.09.020

Article  CAS  PubMed  Google Scholar 

Palikaras K, Tavernarakis N (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 56:182–188. https://doi.org/10.1016/j.exger.2014.01.021

Article  CAS  PubMed  Google Scholar 

Keipert S, Voigt A, Klaus S (2011) Dietary effects on body composition, glucose metabolism, and longevity are modulated by skeletal muscle mitochondrial uncoupling in mice. Aging Cell 10:122–136. https://doi.org/10.1111/j.1474-9726.2010.00648.x

Article  CAS  PubMed  Google Scholar 

Ikuta T, Saito S, Tani H, Tatefuji T, Hashimoto K (2015) Resveratrol derivative-rich melinjo (Gnetum gnemon L.) seed extract improves obesity and survival of C57BL/6 mice fed a high-fat diet. Biosci Biotechnol Biochem 79:2044–2049. https://doi.org/10.1080/09168451.2015.1056510

Article  CAS  PubMed  Google Scholar 

Chiang C-H, Li S-J, Lin Y-H, Wang P-Y, Hsu P-S, Lin S-P et al (2023) Early-onset caloric restriction alleviates ageing-associated steatohepatitis in male mice via restoring mitochondrial homeostasis. Biogerontology 24:391–401. https://doi.org/10.1007/s10522-023-10023-4

Article  CAS  PubMed  Google Scholar 

Thillainadesan S, Madsen S, James DE, Hocking SL (2022) The impact of weight cycling on health outcomes in animal models: a systematic review and meta-analysis. Obes Rev 23:e13416. https://doi.org/10.1111/obr.13416

Article  PubMed  Google Scholar 

Montani J-P, Viecelli AK, Prévot A, Dulloo AG (2006) Weight cycling during growth and beyond as a risk factor for later cardiovascular diseases: the ‘repeated overshoot’ theory. Int J Obes 30:S58-66. https://doi.org/10.1038/sj.ijo.0803520

Article  Google Scholar 

Barbosa-da-Silva S, da Silva NC, Aguila MB, Mandarim-de-Lacerda CA (2014) Liver damage is not reversed during the lean period in diet-induced weight cycling in mice. Hepatol Res 44:450–459. https://doi.org/10.1111/hepr.12138

Article  CAS  PubMed  Google Scholar 

Najt CP, Senthivinayagam S, Aljazi MB, Fader KA, Olenic SD, Brock JRL et al (2016) Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis. Am J Physiol Gastrointest Liver Physiol 310:G726–G738. https://doi.org/10.1152/ajpgi.00436.2015

Article  PubMed  PubMed Central  Google Scholar 

Itabe H, Yamaguchi T, Nimura S, Sasabe N (2017) Perilipins: a diversity of intracellular lipid droplet proteins. Lipids Health Dis 16:83. https://doi.org/10.1186/s12944-017-0473-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding R-B, Bao J, Deng C-X (2017) Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 13:852–867. https://doi.org/10.7150/ijbs.19370

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng X-Q, Chen L-L, Li N-X (2007) The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liver Int 27:708–715. https://doi.org/10.1111/j.1478-3231.2007.01497.x

Article  CAS  PubMed  Google Scholar 

Lomb DJ, Laurent G, Haigis MC (2010) Sirtuins regulate key aspects of lipid metabolism. Biochim Biophys Acta Proteins Proteom 1804:1652–1657. https://doi.org/10.1016/j.bbapap.2009.11.021

Article  CAS  Google Scholar 

Schreurs M, Kuipers F, Van Der Leij FR (2010) Regulatory enzymes of mitochondrial β-oxidation as targets for treatment of the metabolic syndrome. Obes Rev 11:380–388. https://doi.org/10.1111/j.1467-789X.2009.00642.x

Article  CAS  PubMed  Google Scholar 

Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD et al (2003) Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125:437–443. https://doi.org/10.1016/S0016-5085(03)00907-7

Article  PubMed  Google Scholar 

Canbay A, Feldstein A, Baskin-Bey E, Bronk SF, Gores GJ (2004) The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther 308:1191–1196. https://doi.org/10.1124/jpet.103.060129

Article 

留言 (0)

沒有登入
gif