Romidepsin exhibits anti-esophageal squamous cell carcinoma activity through the DDIT4-mTORC1 pathway

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

Article  PubMed  Google Scholar 

Reichenbach ZW, Murray MG, Saxena R, Farkas D, Karassik EG, Klochkova A, et al. Clinical and translational advances in esophageal squamous cell carcinoma. Adv Cancer Res. 2019;144:95–135. https://doi.org/10.1016/bs.acr.2019.05.004.

Article  CAS  PubMed  Google Scholar 

Codipilly DC, Qin Y, Dawsey SM, Kisiel J, Topazian M, Ahlquist D, et al. Screening for esophageal squamous cell carcinoma: recent advances. Gastrointest Endosc. 2018;88:413–26. https://doi.org/10.1016/j.gie.2018.04.2352.

Article  PubMed  PubMed Central  Google Scholar 

Hirano H, Kato K. Systemic treatment of advanced esophageal squamous cell carcinoma: chemotherapy, molecular-targeting therapy and immunotherapy. Jpn J Clin Oncol. 2019;49:412–20. https://doi.org/10.1093/jjco/hyz034.

Article  PubMed  Google Scholar 

Kondo J, Inoue M. Application of Cancer Organoid Model for Drug Screening and Personalized Therapy. Cells. 2019;8:470. https://doi.org/10.3390/cells8050470.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee DW, Lee SY, Doh I, Ryu GH, Nam DH. High-Dose Compound Heat Map for 3D-Cultured Glioblastoma Multiforme Cells in a Micropillar and Microwell Chip Platform. Biomed Res Int. 2017;2017:7218707. https://doi.org/10.1155/2017/7218707.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan X, Zhou L, Wu Z, Wang X, Chen X, Yang F, et al. High throughput scaffold-based 3D micro-tumor array for efficient drug screening and chemosensitivity testing. Biomaterials. 2019;198:167–79. https://doi.org/10.1016/j.biomaterials.2018.05.020.

Article  CAS  PubMed  Google Scholar 

Huang Y, Dai Y, Wen C, He S, Shi J, Zhao D, et al. circSETD3 Contributes to Acquired Resistance to Gefitinib in Non-Small-Cell Lung Cancer by Targeting the miR-520h/ABCG2 Pathway. Mol Ther Nucleic Acids. 2020;21:885–99. https://doi.org/10.1016/j.omtn.2020.07.027.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Whittaker SJ, Demierre MF, Kim EJ, Rook AH, Lerner A, Duvic M, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485–91. https://doi.org/10.1200/JCO.2010.28.9066.

Article  CAS  PubMed  Google Scholar 

Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47. https://doi.org/10.1016/j.ejca.2008.10.026.

Article  CAS  PubMed  Google Scholar 

Zhang JH, Chung TD, Oldenburg KR. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen. 1999;4:67–73. https://doi.org/10.1177/108705719900400206.

Article  CAS  PubMed  Google Scholar 

Thuss-Patience P, Stein A. Immunotherapy in Squamous Cell Cancer of the Esophagus. Curr Oncol. 2022;29:2461–71. https://doi.org/10.3390/curroncol29040200.

Article  PubMed  PubMed Central  Google Scholar 

Thuru X, Magnez R, El-Bouazzati H, Vergoten G, Quesnel B, Bailly C. Drug Repurposing to Enhance Antitumor Response to PD-1/PD-L1 Immune Checkpoint Inhibitors. Cancers. 2022;14:3368. https://doi.org/10.3390/cancers14143368.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foltyn M, Luger AL, Lorenz NI, Sauer B, Mittelbronn M, Harter PN, et al. The physiological mTOR complex 1 inhibitor DDIT4 mediates therapy resistance in glioblastoma. Br J Cancer. 2019;120:481–7. https://doi.org/10.1038/s41416-018-0368-3.

Article  PubMed  PubMed Central  Google Scholar 

El Omari N, Lee LH, Bakrim S, Makeen HA, Alhazmi HA, Mohan S, et al. Molecular mechanistic pathways underlying the anticancer therapeutic efficiency of romidepsin. Biomed Pharmacother. 2023;164:114774. https://doi.org/10.1016/j.biopha.2023.114774.

Article  CAS  PubMed  Google Scholar 

Wang Y, Han E, Xing Q, Yan J, Arrington A, Wang C, et al. Baicalein upregulates DDIT4 expression which mediates mTOR inhibition and growth inhibition in cancer cells. Cancer Lett. 2015;358:170–9. https://doi.org/10.1016/j.canlet.2014.12.033.

Article  CAS  PubMed  Google Scholar 

Kim LC, Cook RS, Chen J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene. 2017;36:2191–201. https://doi.org/10.1038/onc.2016.363.

Article  CAS  PubMed  Google Scholar 

Zeng M, Ruan Z, Tang J, Liu M, Hu C, Fan P, et al. Generation, evolution, interfering factors, applications, and challenges of patient-derived xenograft models in immunodeficient mice. Cancer Cell Int. 2023;23:120. https://doi.org/10.1186/s12935-023-02953-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivers ZT, Oostra DR, Westholder JS, Vercellotti GM. Romidepsin-associated cardiac toxicity and ECG changes: A case report and review of the literature. J Oncol Pharm Pr. 2018;24:56–62. https://doi.org/10.1177/1078155216673229.

Article  Google Scholar 

Shi Y, Fu Y, Zhang X, Zhao G, Yao Y, Guo Y, et al. Romidepsin (FK228) regulates the expression of the immune checkpoint ligand PD-L1 and suppresses cellular immune functions in colon cancer. Cancer Immunol Immunother. 2021;70:61–73. https://doi.org/10.1007/s00262-020-02653-1.

Article  CAS  PubMed  Google Scholar 

Jiang YY, Jiang Y, Li CQ, Zhang Y, Dakle P, Kaur H, et al. TP63, SOX2, and KLF5 Establish a Core Regulatory Circuitry That Controls Epigenetic and Transcription Patterns in Esophageal Squamous Cell Carcinoma Cell Lines. Gastroenterology. 2020;159:1311–e19.

Article  CAS  PubMed  Google Scholar 

Hoshino I, Matsubara H, Akutsu Y, Nishimori T, Yoneyama Y, Murakami K, et al. Gene expression profiling induced by histone deacetylase inhibitor, FK228, in human esophageal squamous cancer cells. Oncol Rep. 2007;18:585–92.

CAS  PubMed  Google Scholar 

Hoshino I, Matsubara H, Hanari N, Mori M, Nishimori T, Yoneyama Y, et al. Histone deacetylase inhibitor FK228 activates tumor suppressor Prdx1 with apoptosis induction in esophageal cancer cells. Clin Cancer Res. 2005;11:7945–52. https://doi.org/10.1158/1078-0432.CCR-05-0840.

Article  CAS  PubMed  Google Scholar 

Ahrens TD, Timme S, Hoeppner J, Ostendorp J, Hembach S, Follo M, et al. Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and Azacytidine. Epigenetics. 2015;10:431–45. https://doi.org/10.1080/15592294.2015.1039216.

Article  PubMed  PubMed Central  Google Scholar 

Shah RR. Safety and Tolerability of Histone Deacetylase (HDAC) Inhibitors in Oncology. Drug Saf. 2019;42:235–45. https://doi.org/10.1007/s40264-018-0773-9.

Article  CAS  PubMed  Google Scholar 

Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S, et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol. 2002;22:2283–93. https://doi.org/10.1128/MCB.22.7.2283-2293.2002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell. 2002;10:995–1005. https://doi.org/10.1016/s1097-2765(02)00706-2.

Article  CAS  PubMed  Google Scholar 

Zhidkova EM, Lylova ES, Grigoreva DD, Kirsanov KI, Osipova AV, Kulikov EP, et al. Nutritional Sensor REDD1 in Cancer and Inflammation: Friend or Foe? Int J Mol Sci. 2022;23:9686. https://doi.org/10.3390/ijms23179686.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding F, Gao F, Zhang S, Lv X, Chen Y, Liu Q. A review of the mechanism of DDIT4 serve as a mitochondrial related protein in tumor regulation. Sci Prog. 2021;104:36850421997273. https://doi.org/10.1177/0036850421997273.

Article  CAS  PubMed  Google Scholar 

Tirado-Hurtado I, Fajardo W, Pinto JA. DNA Damage Inducible Transcript 4 Gene: The Switch of the Metabolism as Potential Target in Cancer. Front Oncol. 2018;8:106. https://doi.org/10.3389/fonc.2018.00106.

Article  PubMed  PubMed Central  Google Scholar 

Song L, Chen Z, Zhang M, Zhang M, Lu X, Li C, et al. DDIT4 overexpression associates with poor prognosis in lung adenocarcinoma. J Cancer. 2021;12:6422–8. https://doi.org/10.7150/jca.60118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Zhu H, Zhao C, Liu D, Luo J, Ying Y, et al. DDIT4 promotes malignancy of head and neck squamous cell carcinoma. Mol Carcinog. 2023;62:332–47. https://doi.org/10.1002/mc.23489.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif