Blockade of aryl hydrocarbon receptor restricts omeprazole-induced chronic kidney disease

Chen TK, Knicely DH, Grams ME (2019) Chronic kidney disease diagnosis and management: a review. JAMA 322:1294–1304. https://doi.org/10.1001/jama.2019.14745

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, Pletcher MA, Smith AE, Tang K, Yuan CW et al (2018) Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 392:2052–2090. https://doi.org/10.1016/S0140-6736(18)31694-5

Article  PubMed  PubMed Central  Google Scholar 

Radhakrishnan J, Perazella MA (2015) Drug-induced glomerular disease: attention required! Clin J Am Soc Nephrol 10:1287–1290. https://doi.org/10.2215/CJN.01010115

Article  PubMed  PubMed Central  Google Scholar 

Poly TN, Islam MM, Walther BA, Lin MC, Li YJ (2022) Proton pump inhibitors use and the risk of pancreatic cancer: evidence from eleven epidemiological studies, comprising 1.5 million individuals. Cancers (Basel) 14(21):5357. https://doi.org/10.3390/cancers14215357

Kamada T, Satoh K, Itoh T, Ito M, Iwamoto J, Okimoto T, Kanno T, Sugimoto M, Chiba T, Nomura S et al (2021) Evidence-based clinical practice guidelines for peptic ulcer disease 2020. J Gastroenterol 56:303–322. https://doi.org/10.1007/s00535-021-01769-0

Article  PubMed  PubMed Central  Google Scholar 

Vaezi MF, Yang YX, Howden CW (2017) Complications of proton pump inhibitor therapy. Gastroenterology 153:35–48. https://doi.org/10.1053/j.gastro.2017.04.047

Article  CAS  PubMed  Google Scholar 

Lazarus B, Chen Y, Wilson FP, Sang Y, Chang AR, Coresh J, Grams ME (2016) Proton pump inhibitor use and the risk of chronic kidney disease. JAMA Intern Med 176:238–246. https://doi.org/10.1001/jamainternmed.2015.7193

Article  PubMed  PubMed Central  Google Scholar 

Xie Y, Bowe B, Li T, Xian H, Balasubramanian S, Al-Aly Z (2016) Proton pump inhibitors and risk of incident CKD and progression to ESRD. J Am Soc Nephrol 27:3153–3163. https://doi.org/10.1681/ASN.2015121377

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blank ML, Parkin L, Paul C, Herbison P (2014) A nationwide nested case-control study indicates an increased risk of acute interstitial nephritis with proton pump inhibitor use. Kidney Int 86:837–844. https://doi.org/10.1038/ki.2014.74

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muriithi AK, Leung N, Valeri AM, Cornell LD, Sethi S, Fidler ME, Nasr SH (2014) Biopsy-proven acute interstitial nephritis, 1993–2011: a case series. Am J Kidney Dis 64:558–566. https://doi.org/10.1053/j.ajkd.2014.04.027

Article  PubMed  Google Scholar 

Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, Cardenas-Villacres D, Carrasco S, Sanchez-Nino MD, Ruiz-Ortega M, Ortiz A, Sanz AB (2020) Molecular pathways driving omeprazole nephrotoxicity. Redox Biol 32:101464. https://doi.org/10.1016/j.redox.2020.101464

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie Y, Bowe B, Li T, Xian H, Yan Y, Al-Aly Z (2017) Long-term kidney outcomes among users of proton pump inhibitors without intervening acute kidney injury. Kidney Int 91:1482–1494. https://doi.org/10.1016/j.kint.2016.12.021

Article  CAS  PubMed  Google Scholar 

Kia L, Kahrilas PJ (2016) Therapy: risks associated with chronic PPI use - signal or noise? Nat Rev Gastroenterol Hepatol 13:253–254. https://doi.org/10.1038/nrgastro.2016.44

Article  CAS  PubMed  Google Scholar 

Lazarus B, Carrero JJ (2020) Long-term renal effects of proton pump inhibitor use. Gastroenterology 158:1173–1174. https://doi.org/10.1053/j.gastro.2019.07.066

Article  PubMed  Google Scholar 

Mescher M, Haarmann-Stemmann T (2018) Modulation of CYP1A1 metabolism: from adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 187:71–87. https://doi.org/10.1016/j.pharmthera.2018.02.012

Article  CAS  PubMed  Google Scholar 

Zhao H, Chen L, Yang T, Feng YL, Vaziri ND, Liu BL, Liu QQ, Guo Y, Zhao YY (2019) Aryl hydrocarbon receptor activation mediates kidney disease and renal cell carcinoma. J Transl Med 17:302. https://doi.org/10.1186/s12967-019-2054-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coelho NR, Tomkiewicz C, Correia MJ, Goncalves-Dias C, Barouki R, Pereira SA, Coumoul X, Monteiro EC (2020) First evidence of aryl hydrocarbon receptor as a druggable target in hypertension induced by chronic intermittent hypoxia. Pharmacol Res 159:104869. https://doi.org/10.1016/j.phrs.2020.104869

Article  CAS  PubMed  Google Scholar 

Correia MJ, Pimpao AB, Lopes-Coelho F, Sequeira CO, Coelho NR, Goncalves-Dias C, Barouki R, Coumoul X, Serpa J, Morello J et al (2021) Aryl hydrocarbon receptor and cysteine redox dynamics underlie (mal)adaptive mechanisms to chronic intermittent hypoxia in kidney cortex. Antioxidants (Basel) 10(9):1484. https://doi.org/10.3390/antiox10091484

Coelho NR, Matos C, Pimpao AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC (2021) AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 165:105407. https://doi.org/10.1016/j.phrs.2020.105407

Article  CAS  PubMed  Google Scholar 

Tao S, Guo F, Ren Q, Liu J, Wei T, Li L, Ma L, Fu P (2021) Activation of aryl hydrocarbon receptor by 6-formylindolo[3,2-b]carbazole alleviated acute kidney injury by repressing inflammation and apoptosis. J Cell Mol Med 25:1035–1047. https://doi.org/10.1111/jcmm.16168

Article  CAS  PubMed  Google Scholar 

Lee HJ, Pyo MC, Shin HS, Ryu D, Lee KW (2018) Renal toxicity through AhR, PXR, and Nrf2 signaling pathway activation of ochratoxin A-induced oxidative stress in kidney cells. Food Chem Toxicol 122:59–68. https://doi.org/10.1016/j.fct.2018.10.004

Article  CAS  PubMed  Google Scholar 

Neavin DR, Liu D, Ray B, Weinshilboum RM (2018) The role of the aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases. Int J Mol Sci 19(12):3851. https://doi.org/10.3390/ijms19123851

Wojcikowski K, Gobe G (2014) Animal studies on medicinal herbs: predictability, dose conversion and potential value. Phytother Res 28:22–27. https://doi.org/10.1002/ptr.4966

Article  PubMed  Google Scholar 

Fong W, Li Q, Ji F, Liang W, Lau HCH, Kang X, Liu W, To KK, Zuo Z, Li X et al (2023) Lactobacillus gallinarum-derived metabolites boost anti-PD1 efficacy in colorectal cancer by inhibiting regulatory T cells through modulating IDO1/Kyn/AHR axis. Gut 72:2272–2285. https://doi.org/10.1136/gutjnl-2023-329543

Article  CAS  PubMed  Google Scholar 

Han Z, Gong C, Li J, Guo H, Chen X, Jin Y, Gao S, Tai Z (2022) Immunologically modified enzyme-responsive micelles regulate the tumor microenvironment for cancer immunotherapy. Mater Today Bio 13:100170. https://doi.org/10.1016/j.mtbio.2021.100170

Article  CAS  PubMed  Google Scholar 

Skupinska K, Misiewicz-Krzeminska I, Stypulkowski R, Lubelska K (2009) Sulforaphane and its analogues inhibit CYP1A1 and CYP1A2 activity induced by benzo[a]pyrene. J Biochem Mol Toxicol Jan-Feb 23(1):18–28. https://doi.org/10.1002/jbt.20259

Article  CAS  Google Scholar 

Yang F, Zhuang S, Zhang C, Dai H, Liu W (2013) Sulforaphane inhibits CYP1A1 activity and promotes genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro. Toxicol Appl Pharmacol 269:226–232. https://doi.org/10.1016/j.taap.2013.03.024

Article  CAS  PubMed  Google Scholar 

Wu CC, Liao MH, Kung WM, Wang YC (2023) Proton pump inhibitors and risk of chronic kidney disease: evidence from observational studies. J Clin Med 12(6):2262. https://doi.org/10.3390/jcm12062262

Zhang XY, He QS, Jing Z, He JX, Yuan JQ, Dai XY (2022) Effect of proton pump inhibitors on the risk of chronic kidney disease: a propensity score-based overlap weight analysis using the United Kingdom Biobank. Front Pharmacol 13:949699. https://doi.org/10.3389/fphar.2022.949699

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi DK, Jung SB, Park BH, Jeong BC, Seo SI, Jeon SS, Lee HM, Choi HY, Jeon HG (2015) Compensatory structural and functional adaptation after radical nephrectomy for renal cell carcinoma according to preoperative stage of chronic kidney disease. J Urol 194:910–915. https://doi.org/10.1016/j.juro.2015.04.093

Article  PubMed  Google Scholar 

Yang H, Xie T, Li D, Du X, Wang T, Li C, Song X, Xu L, Yi F, Liang X et al (2019) Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-kappaB/TNF-alpha pathway. Mol Metab 23:24–36. https://doi.org/10.1016/j.molmet.2019.02.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park KM, Hussein KH, Nam HS, Kim HM, Kang BM, Lee DG, Han HJ, Woo HM (2016) A novel mouse model of diabetes mellitus using unilateral nephrectomy. Lab Anim 50:88–93. https://doi.org/10.1177/0023677215590515

Article  CAS  PubMed  Google Scholar 

Liu J, Li QX, Wang XJ, Zhang C, Duan YQ, Wang ZY, Zhang Y, Yu X, Li NJ, Sun JP et al (2016) beta-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis 7:e2183. https://doi.org/10.1038/cddis.2016.89

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murray IA, Patterson AD, Perdew GH (2014) Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer 14:801–814. https://doi.org/10.1038/nrc3846

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shan A, Leng L, Li J, Luo XM, Fan YJ, Yang Q, Xie QH, Chen YS,

留言 (0)

沒有登入
gif