Untargeted metabolomic profiling reveals molecular signatures associated with type 2 diabetes in Nigerians

Tinajero MG, Malik VS. An update on the epidemiology of type 2 diabetes: a global perspective. Endocrinol Metab Clin North Am. 2021;50(3):337–55.

Article  Google Scholar 

Ekoru K, et al. Type 2 diabetes complications and comorbidity in Sub-Saharan Africans. EClinicalMedicine. 2019;16:30–41.

Article  PubMed Central  Google Scholar 

Magliano DJ, Boyko EJ, I.D.F.D.A.t.e.s. committee. IDF Diabetes Atlas, in Idf diabetes atlas. Brussels: International Diabetes Federation © International Diabetes Federation; 2021.

Google Scholar 

Agyemang C, et al. Obesity and type 2 diabetes in sub-Saharan Africans - Is the burden in today’s Africa similar to African migrants in Europe? The RODAM study. BMC Med. 2016;14(1):166.

Article  PubMed Central  Google Scholar 

Bhupathiraju SN, Hu FB. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res. 2016;118(11):1723–35.

Article  CAS  PubMed Central  Google Scholar 

Wells JCK. The diabesity epidemic in the light of evolution: insights from the capacity-load model. Diabetologia. 2019;62(10):1740–50.

Article  PubMed Central  Google Scholar 

Goedecke JH, Olsson T. Pathogenesis of type 2 diabetes risk in black Africans: a South African perspective. J Intern Med. 2020;288(3):284–94.

Article  CAS  Google Scholar 

Ekoru K, et al. H3Africa multi-centre study of the prevalence and environmental and genetic determinants of type 2 diabetes in sub-Saharan Africa: study protocol. Glob Health Epidemiol Genom. 2016;1:e5.

Article  CAS  PubMed Central  Google Scholar 

Madlala SS, et al. Dietary diversity and its association with nutritional status, cardiometabolic risk factors and food choices of adults at risk for type 2 diabetes mellitus in Cape Town, South Africa. Nutrients. 2022;14(15):3191.

Article  CAS  PubMed Central  Google Scholar 

Doherty ML, et al. Type 2 diabetes in a rapidly urbanizing region of Ghana, West Africa: a qualitative study of dietary preferences, knowledge and practices. BMC Public Health. 2014;14:1069.

Article  PubMed Central  Google Scholar 

Halim M, Halim A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes Metab Syndr. 2019;13(2):1165–72.

Article  Google Scholar 

Luc K, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70(6):809–24.

Luca M, et al. Gut microbiota in Alzheimer’s disease, depression, and type 2 diabetes Mellitus: the role of oxidative stress. Oxid Med Cell Longev. 2019;2019:4730539.

PubMed Central  Google Scholar 

Odegaard AO, et al. Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes. Cardiovasc Diabetol. 2016;15:51.

Article  PubMed Central  Google Scholar 

Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr. 2018;12(3):455–62.

Article  Google Scholar 

Cheng F, et al. Shortened leukocyte telomere length Is associated with glycemic progression in type 2 diabetes: a prospective and mendelian randomization analysis. Diabetes Care. 2022;45(3):701–9.

Article  CAS  PubMed Central  Google Scholar 

Ma D, et al. The changes of leukocyte telomere length and telomerase activity after sitagliptin intervention in newly diagnosed type 2 diabetes. Diabetes Metab Res Rev. 2015;31(3):256–61.

Article  CAS  Google Scholar 

Passaro AP, et al. Omics era in type 2 diabetes: From childhood to adulthood. World J Diabetes. 2021;12(12):2027–35.

Article  PubMed Central  Google Scholar 

Chiefari E, et al. Transcriptional Regulation of Glucose Metabolism: The Emerging Role of the HMGA1 Chromatin Factor. Front Endocrinol (Lausanne). 2018;9:357.

Article  Google Scholar 

De Jesus DF, Kulkarni RN. “Omics” and “epi-omics” underlying the β-cell adaptation to insulin resistance. Mol Metab. 2019;27S(Suppl):S42–8.

Article  Google Scholar 

Maulucci G, et al. The combination of whole cell lipidomics analysis and single cell confocal imaging of fluidity and micropolarity provides insight into stress-induced lipid turnover in subcellular organelles of pancreatic beta cells. Molecules. 2019;24(20):3742.

Article  CAS  PubMed Central  Google Scholar 

Prabu P, et al. Circulating MiRNAs of “Asian Indian Phenotype” Identified in Subjects with Impaired Glucose Tolerance and Patients with Type 2 Diabetes. PLoS One. 2015;10(5):e0128372.

Article  PubMed Central  Google Scholar 

Sinem N. In: Sinem N, Hakima A, editors. Metabolomics: Basic Principles and Strategies, in Molecular Medicine. Rijeka: IntechOpen; 2019. p. Ch. 8.

Google Scholar 

Steuer AE, Brockbals L, Kraemer T. Metabolomic strategies in biomarker research-new approach for indirect identification of drug consumption and sample manipulation in clinical and forensic toxicology? Front Chem. 2019;7:319.

Article  CAS  PubMed Central  Google Scholar 

Guijas C, et al. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018;36(4):316–20.

Article  CAS  PubMed Central  Google Scholar 

Tokarz J, et al. Endocrinology meets metabolomics: achievements, pitfalls, and challenges. Trends Endocrinol Metab. 2017;28(10):705–21.

Article  CAS  Google Scholar 

Wei Y, et al. Early breast cancer detection using untargeted and targeted metabolomics. J Proteome Res. 2021;20(6):3124–33.

Article  CAS  Google Scholar 

Pandey R, et al. Metabolomic signature of brain cancer. Mol Carcinog. 2017;56(11):2355–71.

Article  CAS  PubMed Central  Google Scholar 

Arjmand B, et al. Metabolomics Signatures of SARS-CoV-2 Infection. Adv Exp Med Biol. 2022;1376:45–59.

Article  CAS  Google Scholar 

Li J, et al. Metabolomic analysis reveals potential biomarkers and the underlying pathogenesis involved in Mycoplasma pneumoniae pneumonia. Emerg Microbes Infect. 2022;11(1):593–605.

Article  CAS  PubMed Central  Google Scholar 

Imamura F, et al. Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: a pooled analysis of prospective cohort studies. PLoS Med. 2018;15(10):e1002670.

Article  CAS  PubMed Central  Google Scholar 

Roberts LD, et al. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 2014;19(1):96–108.

Article  MathSciNet  CAS  PubMed Central  Google Scholar 

Sun L, Li H, Lin X. Linking of metabolomic biomarkers with cardiometabolic health in Chinese population. J Diabetes. 2019;11(4):280–91.

Article  Google Scholar 

Hanafy MM, et al. Time-based investigation of urinary metabolic markers for Type 2 diabetes: Metabolomics approach for diabetes management. BioFactors. 2021;47(4):645–57.

Article  CAS  Google Scholar 

Yang G, Mishra M and Perera MA. Multi-Omics studies in historically excluded populations: the road to equity. Clin Pharmacol Ther. Clin Pharmacol Ther. 2023;113(3):541–56.

Ahola-Olli AV, et al. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia. 2019;62(12):2298–309.

Article  CAS  PubMed Central  Google Scholar 

Benchoula K, et al. Metabolomics based biomarker identification of anti-diabetes and anti-obesity properties of Malaysian herbs. Metabolomics. 2022;18(2):12.

Article  CAS  Google Scholar 

Lu Y, et al. Metabolic signatures and risk of type 2 diabetes in a Chinese population: an untargeted metabolomics study using both LC-MS and GC-MS. Diabetologia. 2016;59(11):2349–59.

Article  CAS  Google Scholar 

Shi L, et al. Plasma metabolites associated with type 2 diabetes in a Swedish population: a case-control study nested in a prospective cohort. Diabetologia. 2018;61(4):849–61.

Article  CAS  PubMed Central  Google Scholar 

Abdrabou W, et al. Metabolome modulation of the host adaptive immunity in human malaria. Nat Metab. 2021;3(7):1001–16.

Article  CAS  Google Scholar 

du Preez I, Luies L, Loots DT. The application of metabolomics toward pulmonary tuberculosis research. Tuberculosis (Edinb). 2019;115:126–39.

Article  Google Scholar 

Gale TV, et al. Metabolomics analyses identify platelet activating factors and heme breakdown products as Lassa fever biomarkers. PLoS Negl Trop Dis. 2017;11(9):e0005943.

Article  PubMed Central  Google Scholar 

Mason S, Solomons R. CSF metabolomics of tuberculous meningitis: a review. Metabolites. 2021;11(10):661.

Article  CAS  PubMed Central  Google Scholar 

Ribeiro PR, et al. Blood plasma metabolomics of children and adolescents with sickle cell anaemia treated with hydroxycarbamide: a new tool for uncovering biochemical alterations. Br J Haematol. 2021;192(5):922–31.

Article  CAS  Google Scholar 

Bourdon C, et al. Metabolomics in plasma of Malawian children 7 years after surviving severe acute malnutrition: “ChroSAM” a cohort study. EBioMedicine. 2019;45:464–72.

Article  PubMed Central  Google Scholar 

Sazawal S, et al. Machine learning guided postnatal gestational age assessment using new-born screening metabolomic data in South Asia and sub-Saharan Africa. BMC Pregnancy Childbirth. 2021;21(1):609.

Article 

留言 (0)

沒有登入
gif