Decreased circulating CTRP3 levels in acute and chronic cardiovascular patients

Dagenais GR, Leong DP, Rangarajan S, Lanas F, Lopez-Jaramillo P, Gupta R, Diaz R, Avezum A, Oliveira GBF, Wielgosz A et al (2020) Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet. https://doi.org/10.1016/S0140-6736(19)32007-0

Article  Google Scholar 

Dwivedi AK, Dubey P, Cistola DP, Reddy SY (2020) Association Between Obesity and Cardiovascular Outcomes: Updated Evidence from Meta-analysis Studies. Curr Cardiol Rep 22:1–19

Article  Google Scholar 

Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL (2017) Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis 11(8):215–225

Article  CAS  Google Scholar 

Weber C, Noels H (2011) Atherosclerosis: Current pathogenesis and therapeutic options. Nat Med 17(11):1410–1422

Article  CAS  Google Scholar 

Saleh M, Ambrose JA (2018) Understanding myocardial infarction. F1000Res 7:F1000 Faculty Rev-1378. https://doi.org/10.12688/f1000research.15096.1

Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316(2):129–139

Article  CAS  Google Scholar 

Luo L, Liu M (2016) Adipose tissue in control of metabolism. J Endocrinol 231(3):R77–R99

Article  CAS  Google Scholar 

Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G, Catalán V (2018) Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest 48(9):e12997

Article  Google Scholar 

Funcke JB, Scherer PE (2019) Beyond adiponectin and leptin: Adipose tissue-derived mediators of inter-organ communication. J Lipid Res 60(10):1648–1697

Article  CAS  Google Scholar 

Nakamura K, Fuster JJ, Walsh K (2014) Adipokines: A link between obesity and cardiovascular disease. J Cardiol 63(4):250–259

Article  Google Scholar 

Guo B, Zhuang T, Xu F, Lin X, Li F, Shan SK, Wu F, Zhong JY, Wang Y, Zheng MH et al (2020) New Insights Into Implications of CTRP3 in Obesity, Metabolic Dysfunction, and Cardiovascular Diseases: Potential of Therapeutic Interventions. Front Physiol 11:570270

Article  Google Scholar 

Yaribeygi H, Rashidfarrokhi F, Atkin SL, Sahebkar A (2019) C1q/TNF-related protein-3 and glucose homeostasis. Diabetes Metab Syndr Clin Res Rev 13(3):1923–1927

Article  Google Scholar 

Yang Y, Li Y, Ma Z, Jiang S, Fan C, Hu W, Wang D, Di S, Sun Y, Yi W (2016) A brief glimpse at CTRP3 and CTRP9 in lipid metabolism and cardiovascular protection. Prog Lipid Res 64:170–177

Article  CAS  Google Scholar 

Kopp A, Bala M, Buechler C, Falk W, Gross P, Neumeier M, Schölmerich J, Schäffler A (2010) C1q/TNF-related protein-3 represents a novel and endogenous lipopolysaccharide antagonist of the adipose tissue. Endocrinology 151:5267–5278. https://doi.org/10.1210/en.2010-0571

Article  CAS  Google Scholar 

Schmid A, Kopp A, Hanses F, Karrasch T, Schäffler A (2014) C1q/TNF-related protein-3 (CTRP-3) attenuates lipopolysaccharide (LPS)-induced systemic inflammation and adipose tissue Erk-1/-2 phosphorylation in mice in vivo. Biochem Biophys Res Commun 452:8–13. https://doi.org/10.1016/j.bbrc.2014.06.054

Article  CAS  Google Scholar 

Gao C, Zhao S, Lian K, Mi B, Si R, Tan Z, Fu F, Wang S, Wang R, Ma X et al (2019) C1q/TNF-related protein 3 (CTRP3) and 9 (CTRP9) concentrations are decreased in patients with heart failure and are associated with increased morbidity and mortality. BMC Cardiovasc Disord 19:1–9. https://doi.org/10.1186/s12872-019-1117-0

Article  CAS  Google Scholar 

Yoo HJ, Hwang SY, Hong HC, Choi HY, Yang SJ, Choi DS, Baik SH, Blüher M, Youn BS, Choi KM (2013) Implication of Progranulin and C1q/TNF-Related Protein-3 (CTRP3) on Inflammation and Atherosclerosis in Subjects with or without Metabolic Syndrome. PLoS One 8(2):e55744. https://doi.org/10.1371/journal.pone.0055744

Article  ADS  CAS  Google Scholar 

Choi KM, Hwang SY, Hong HC, Choi HY, Yoo HJ, Youn BS, Baik SH, Seo HS (2014) Implications of C1q/TNF-related protein-3 (CTRP-3) and progranulin in patients with acute coronary syndrome and stable angina pectoris. Cardiovasc Diabetol 13(1):1–8. https://doi.org/10.1186/1475-2840-13-14

Article  CAS  Google Scholar 

Zhang B, Zhang P, Tan Y, Feng P, Zhang Z, Liang H, Duan W, Jin Z, Wang X, Liu J et al (2019) C1q-TNF-related protein-3 attenuates pressure overload-induced cardiac hypertrophy by suppressing the p38/CREB pathway and p38-induced ER stress. Cell Death Dis 10(7):520. https://doi.org/10.1038/s41419-019-1749-0

Article  CAS  Google Scholar 

Wang F, Zhao L, Shan Y, Li R, Qin G (2019) CTRP3 Protects against high glucose-induced cell injury in human umbilical vein endothelial cells. Anal Cell Pathol (Amst) 2019:7405602. https://doi.org/10.1155/2019/7405602

Akiyama H, Furukawa S, Wakisaka S, Maeda T (2007) CTRP3/cartducin promotes proliferation and migration of endothelial cells. Mol Cell Biochem 304:243–248. https://doi.org/10.1007/s11010-007-9506-6

Article  CAS  Google Scholar 

Zhang Z, Zhu L, Feng P, Tan Y, Zhang B, Gao E, Wang X, Fan C, Wang X, Yi W et al (2019) C1q/tumor necrosis factor-related protein-3-engineered mesenchymal stromal cells attenuate cardiac impairment in mice with myocardial infarction. Cell Death Dis 10(7):530. https://doi.org/10.1038/s41419-019-1760-5

Article  CAS  Google Scholar 

Wu D, Lei H, Wang JY, Zhang CL, Feng H, Fu FY, Li L, Wu LL (2015) CTRP3 attenuates post-infarct cardiac fibrosis by targeting Smad3 activation and inhibiting myofibroblast differentiation. J Mol Med 93:1311–1325. https://doi.org/10.1007/s00109-015-1309-8

Article  CAS  Google Scholar 

Chen L, Qin L, Liu X, Meng X (2019) CTRP3 Alleviates Ox-LDL–Induced Inflammatory Response and Endothelial Dysfunction in Mouse Aortic Endothelial Cells by Activating the PI3K/Akt/eNOS Pathway. Inflammation 42:1350–1359. https://doi.org/10.1007/s10753-019-00996-1

Article  CAS  Google Scholar 

Zhu H, Ding Y, Zhang Y, Ding X, Zhao J, Ouyang W, Gong J, Zou Y, Liu X, Wu W (2020) CTRP3 induces an intermediate switch of CD14++CD16+ monocyte subset with anti-inflammatory phenotype. Exp Ther Med 19(3):2243–2251. https://doi.org/10.3892/etm.2020.8467

Article  CAS  Google Scholar 

Fadaei R, Moradi N, Baratchian M, Aghajani H, Malek M, Fazaeli AA, Fallah S (2016) Association of C1q/TNF-related protein-3 (CTRP3) and CTRP13 serum levels with coronary artery disease in subjects with and without type 2 diabetes mellitus. PLoS One 11(12):e0168773. https://doi.org/10.1371/journal.pone.0168773

Article  CAS  Google Scholar 

Ahmed SF, Shabayek MI, Abdel Ghany ME, El-Hefnawy MH, El-Mesallamy HO (2018) Role of CTRP3, CTRP9 and MCP-1 for the evaluation of T2DM associated coronary artery disease in Egyptian postmenopausal females. PLoS One 13(12):e0208038. https://doi.org/10.1371/journal.pone.0208038

Article  Google Scholar 

Witten A, Martens L, Schäfer A-C, Troidl C, Pankuweit S, Vlacil A-K, Oberoi R, Schieffer B, Grote K, Stoll M et al (2022) Monocyte subpopulation profiling indicates CDK6-derived cell differentiation and identifies subpopulation-specific miRNA expression sets in acute and stable coronary artery disease. Sci Rep 12:5589. https://doi.org/10.1038/s41598-022-08600-7

Article  ADS  CAS  Google Scholar 

Moradi N, Najafi M, Sharma T, Fallah S, Koushki M, Peterson JM, Meyre D, Fadaei R (2020) Circulating levels of CTRP3 in patients with type 2 diabetes mellitus compared to controls: A systematic review and meta-analysis. Diabetes Res Clin Pract 169:108453

Article  CAS  Google Scholar 

Deng W, Li C, Zhang Y, Zhao J, Yang M, Tian M, Li L, Zheng Y, Chen B, Yang G (2015) Serum C1q/TNF-related protein-3 (CTRP3) levels are decreased in obesity and hypertension and are negatively correlated with parameters of insulin resistance. Diabetol Metab Syndr 7:1–8. https://doi.org/10.1186/s13098-015-0029-0

Article  CAS  Google Scholar 

Li Y, Wright GL, Peterson JM (2017) C1q/TNF-related protein 3 (CTRP3) function and regulation. Compr Physiol 7(3):863. https://doi.org/10.1002/cphy.c160044

Article  Google Scholar 

Maeda T, Wakisaka S (2010) CTRP3/cartducin is induced by transforming growth factor-β1 and promotes vascular smooth muscle cell proliferation. Cell Biol Int 34(3):261–266. https://doi.org/10.1042/cbi20090043

Article  CAS  Google Scholar 

Wölfing B, Buechler C, Weigert J, Neumeier M, Aslanidis C, Schöelmerich J, Schäffler A (2008) Effects of the new C1q/TNF-related protein (CTRP-3) “cartonectin” on the adipocytic secretion of adipokines. Obesity 16(7):1481–1486. https://doi.org/10.1038/oby.2008.206

Article  CAS  Google Scholar 

Zhou W, Wang Y, Wu Y, Yang J, Xu L, Yang Y (2018) Serum CTRP3 level is inversely associated with nonalcoholic fatty liver disease: A 3-y longitudinal study. Clin Chim Acta 479:79–83. https://doi.org/10.1016/j.cca.2018.01.003

Article  ADS  CAS  Google Scholar 

Wagner RM, Sivagnanam K, Clark WA, Peterson JM (2016) Divergent relationship of circulating CTRP3 levels between obesity and gender: A cross-sectional study. PeerJ 4:e2573. https://doi.org/10.7717/peerj.2573

Article  Google Scholar 

Schmid A, Gehl J, Thomalla M, Hochberg A, Kreiß A, Patz M, Karrasch T, Schäffler A (2020) Downregulation of ctrp-3 by weight loss in vivo and by bile acids and incretins in adipocytes in vitro. Int J Mol Sci 21(21):8168. https://doi.org/10.3390/ijms21218168

Article  CAS  Google Scholar 

Otani M, Kogo M, Furukawa S, Wakisaka S, Maeda T (2012) The adiponectin paralog C1q/TNF-related protein 3 (CTRP3) stimulates testosterone production through the cAMP/PKA signaling pathway. Cytokine 58(2):238–244. https://doi.org/10.1016/j.cyto.2012.01.018

Article  CAS  Google Scholar 

Davies RE, Rier JD (2018) Gender Disparities in CAD: Women and Ischemic Heart Disease. Curr Atheroscler Rep 20:1–7. https://doi.org/10.1007/s11883-018-0753-7

Article  Google Scholar 

留言 (0)

沒有登入
gif