Physiological and pathological effects of phase separation in the central nervous system

Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298

Article  CAS  PubMed Central  Google Scholar 

Xia J (2022) Liquid-liquid phase separation: a new perspective to understanding aging and pathogenesis. Biosci Trends 16:359–362

Article  CAS  Google Scholar 

Liu Y, Feng W, Wang Y, Wu B (2024) Crosstalk between protein post-translational modifications and phase separation. Cell Commun Signal 22:110

Article  PubMed Central  Google Scholar 

Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, Parker R, Rosen MK (2016) Compositional control of phase-separated cellular bodies. Cell 166:651–663

Article  CAS  PubMed Central  Google Scholar 

You K, Huang Q, Yu C, Shen B, Sevilla C, Shi M, Hermjakob H, Chen Y, Li T (2020) PhaSepD B: a database of liquid-liquid phase separation related proteins. Nucleic Acids Res 48:D354–d359

Article  CAS  Google Scholar 

Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD et al (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57:936–947

Article  CAS  PubMed Central  Google Scholar 

Hyman AA, Weber CA, Jülicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30:39–58

Article  CAS  Google Scholar 

Treen N, Shimobayashi SF, Eeftens J, Brangwynne CP, Levine M (2021) Properties of repression condensates in living Ciona embryos. Nat Commun 12:1561

Article  ADS  CAS  PubMed Central  Google Scholar 

Zhang JZ, Mehta S, Zhang J (2021) Liquid-liquid phase separation: a principal organizer of the cell’s biochemical activity architecture. Trends Pharmacol Sci 42:845–856

Article  PubMed Central  Google Scholar 

Uversky VN (2017) Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol 44:18–30

Article  CAS  Google Scholar 

Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, Lomonte P (2020) PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res 48:11890–11912

Article  CAS  PubMed Central  Google Scholar 

Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L et al (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:420–435

Article  CAS  PubMed Central  Google Scholar 

Zbinden A, Pérez-Berlanga M, De Rossi P, Polymenidou M (2020) Phase separation and neurodegenerative diseases: a disturbance in the force. Dev Cell 55:45–68

Article  CAS  Google Scholar 

Cinar H, Fetahaj Z, Cinar S, Vernon RM, Chan HS, Winter RHA (2019) Temperature, hydrostatic pressure, and osmolyte effects on liquid-liquid phase separation in protein condensates: physical chemistry and biological implications. Chemistry (Weinheim an der Bergstrasse, Germany) 25:13049–13069

CAS  Google Scholar 

Adame-Arana O, Weber CA, Zaburdaev V, Prost J, Jülicher F (2020) Liquid phase separation controlled by pH. Biophys J 119:1590–1605

Article  CAS  PubMed Central  Google Scholar 

Ruff KM, Roberts S, Chilkoti A, Pappu RV (2018) Advances in Understanding stimulus-responsive phase behavior of intrinsically disordered protein polymers. J Mol Biol 430:4619–4635

Article  CAS  Google Scholar 

Alberti S, Gladfelter A, Mittag T (2019) Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176:419–434

Article  CAS  PubMed Central  Google Scholar 

Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell 60:208–219

Article  CAS  PubMed Central  Google Scholar 

Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133

Article  CAS  PubMed Central  Google Scholar 

Wu H, Chen X, Shen Z, Li H, Liang S, Lu Y, Zhang M (2024) Phosphorylation-dependent membraneless organelle fusion and fission illustrated by postsynaptic density assemblies. Mol Cell 84:309–326.e307

Article  CAS  Google Scholar 

Griffin EE, Odde DJ, Seydoux G (2011) Regulation of the MEX-5 gradient by a spatially segregated kinase/phosphatase cycle. Cell 146:955–968

Article  CAS  PubMed Central  Google Scholar 

Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L (2013) Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152:791–805

Article  CAS  Google Scholar 

Yang Y, Willis TL, Button RW, Strang CJ, Fu Y, Wen X, Grayson PRC, Evans T, Sipthorpe RJ, Roberts SL et al (2019) Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response. Nat Commun 10:3759

Article  ADS  PubMed Central  Google Scholar 

Stender EGP, Ray S, Norrild RK, Larsen JA, Petersen D, Farzadfard A, Galvagnion C, Jensen H, Buell AK (2021) Capillary flow experiments for thermodynamic and kinetic characterization of protein liquid-liquid phase separation. Nat Commun 12:7289

Article  ADS  CAS  PubMed Central  Google Scholar 

Jia TZ, Chandru K, Hongo Y, Afrin R, Usui T, Myojo K, Cleaves HJ 2nd (2019) Membraneless polyester microdroplets as primordial compartments at the origins of life. Proc Natl Acad Sci USA 116:15830–15835

Article  ADS  CAS  PubMed Central  Google Scholar 

Riback JA, Katanski CD, Kear-Scott JL, Pilipenko EV, Rojek AE, Sosnick TR, Drummond DA (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168:1028–1040.e1019

Article  CAS  PubMed Central  Google Scholar 

Trinkle-Mulcahy L, Sleeman JE (2017) The Cajal body and the nucleolus: “in a relationship” or “it’s complicated”? RNA Biol 14:739–751

Article  Google Scholar 

Peng PH, Hsu KW, Wu KJ (2021) Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology. Am J Cancer Res 11:3766–3776

CAS  PubMed Central  Google Scholar 

Sheth U, Parker R (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science (New York, NY) 300:805–808

Article  ADS  CAS  Google Scholar 

Kedersha NL, Gupta M, Li W, Miller I, Anderson P (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147:1431–1442

Article  CAS  PubMed Central  Google Scholar 

Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP (2015) RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci USA 112:E5237–5245

Article  ADS  CAS  PubMed Central  Google Scholar 

Bracha D, Walls MT, Brangwynne CP (2019) Probing and engineering liquid-phase organelles. Nat Biotechnol 37:1435–1445

Article  CAS  Google Scholar 

Alberti S, Dormann D (2019) Liquid-liquid phase separation in disease. Annu Rev Genet 53:171–194

Article  CAS  Google Scholar 

Bracha D, Walls MT, Wei MT, Zhu L, Kurian M, Avalos JL, Toettcher JE, Brangwynne CP (2018) Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175:1467–1480.e1413

Article  CAS  PubMed Central  Google Scholar 

Cramer P (2019) Organization and regulation of gene transcription. Nature 573:45–54

Article  ADS  CAS  Google Scholar 

Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–319

Article  CAS  PubMed Central  Google Scholar 

Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–947

Article  CAS  Google Scholar 

Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q (2018) Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558:318–323

Article  ADS  CAS  PubMed Central  Google Scholar 

Boija A, Klein IA, Sabari BR, Dall’Agnese A, Coffey EL, Zamudio AV, Li CH, Shrinivas K, Manteiga JC, Hannett NM et al (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175:1842–1855.e1816

Article 

留言 (0)

沒有登入
gif