Survival mechanisms of circulating tumor cells and their implications for cancer treatment

Fares, J., et al. (2020). Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduction and Targeted Therapy, 5(1), 28.

Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

Ashworth, T. R. (1869). A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Australas Med J, 14, 146–149.

Google Scholar 

Taddei, M. L., et al. (2012). Anoikis: An emerging hallmark in health and diseases. The Journal of Pathology, 226(2), 380–393.

Article  MathSciNet  CAS  PubMed  Google Scholar 

Kanwar, N., et al. (2015). Identification of genomic signatures in circulating tumor cells from breast cancer. International Journal of Cancer, 137(2), 332–344.

Article  MathSciNet  CAS  PubMed  Google Scholar 

Chang, T. Y. (2021). Comparison of genetic profiling between primary tumor and circulating Tumor cells captured by Microfluidics in Epithelial Ovarian Cancer: Tumor Heterogeneity or Allele Dropout? Diagnostics (Basel) 11 (6).

Zou, L., et al. (2020). Genome–wide copy number analysis of circulating tumor cells in breast cancer patients with liver metastasis. Oncology Reports, 44(3), 1075–1093.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiu, C. G., et al. (2014). Genome-wide characterization of circulating tumor cells identifies novel prognostic genomic alterations in systemic melanoma metastasis. Clinical Chemistry, 60(6), 873–885.

Article  CAS  PubMed  Google Scholar 

Steinert, G., et al. (2014). Immune escape and survival mechanisms in circulating Tumor cells of Colorectal Cancer. Cancer Research, 74(6), 1694–1704.

Article  CAS  PubMed  Google Scholar 

Müller, V., et al. (2005). Circulating tumor cells in breast cancer: Correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clinical Cancer Research, 11(10), 3678–3685.

Article  PubMed  Google Scholar 

Gires, O. A. O. Expression and function of epithelial cell adhesion molecule EpCAM: Where are we after 40 years? (1573–7233 (Electronic)).

Thiery, J. P. (2003). Epithelial–mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15(6), 740–746.

Article  CAS  PubMed  Google Scholar 

Huang, Y., et al. (2022). The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. Journal of Hematology & Oncology, 15(1), 129.

Article  Google Scholar 

Huaman, J. (2019). Fibronectin regulation of integrin B1 and SLUG in circulating Tumor cells. Cells 8 (6).

Lecharpentier, A., et al. (2011). Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. British Journal of Cancer, 105(9), 1338–1341.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, M., et al. (2013). Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 339(6119), 580–584.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Armstrong, A. J., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9(8), 997–1007.

Article  CAS  PubMed  Google Scholar 

Kallergi, G., et al. (2011). Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Research, 13(3), R59.

Article  PubMed  PubMed Central  Google Scholar 

Liu, X., et al. (2019). Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. Science Advances, 5(6), eaav4275.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Chaffer, C. L., et al. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Research, 66(23), 11271–11278.

Article  CAS  PubMed  Google Scholar 

Yamamoto, M., et al. (2017). Intratumoral bidirectional transitions between epithelial and mesenchymal cells in triple-negative breast cancer. Cancer Science, 108(6), 1210–1222.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, M. H., et al. (2015). Circulating cancer stem cells: The importance to select. Chinese Journal of Cancer Research, 27(5), 437–449.

CAS  PubMed  PubMed Central  Google Scholar 

Theodoropoulos, P. A., et al. (2010). Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Letters, 288(1), 99–106.

Article  CAS  PubMed  Google Scholar 

Wan, S., et al. (2019). New Labyrinth Microfluidic device detects circulating Tumor cells expressing Cancer stem cell marker and circulating Tumor Microemboli in Hepatocellular Carcinoma. Scientific Reports, 9(1), 18575.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Morel, A. P. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3 (8), e2888.

Mani, S. A., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papadaki, M. A., et al. (2019). Circulating Tumor cells with stemness and Epithelial-To-Mesenchymal Transition Features Are Chemoresistant and Predictive of poor outcome in metastatic breast Cancer. Molecular Cancer Therapeutics, 18(2), 437–447.

Article  CAS  PubMed  Google Scholar 

Follain, G., et al. (2020). Fluids and their mechanics in tumour transit: Shaping metastasis. Nature Reviews Cancer, 20(2), 107–124.

Article  CAS  PubMed  Google Scholar 

Headley, M. B., et al. (2016). Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature, 531(7595), 513–517.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chang, S. F., et al. (2008). Tumor cell cycle arrest induced by shear stress: Roles of integrins and smad. Proc Natl Acad Sci U S A, 105(10), 3927–3932.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Fu, A., et al. (2016). High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin. Oncotarget, 7(31), 50239–50257.

Article  PubMed  PubMed Central  Google Scholar 

Regmi, S., et al. (2017). High Shear stresses under Exercise Condition destroy circulating Tumor cells in a Microfluidic System. Scientific Reports, 7, 39975.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kienast, Y., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16(1), 116–122.

Article  CAS  PubMed  Google Scholar 

Marrella, A. (2021). High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device. PLoS One 16 (1), e0245536.

Jasuja, H., et al. (2023). Interstitial fluid flow contributes to prostate cancer invasion and migration to bone; study conducted using a novel horizontal flow bioreactor. Biofabrication, 15(2), 025017.

Article  ADS  PubMed Central  Google Scholar 

Kim, O. H., et al. (2022). Fluid shear stress facilitates prostate cancer metastasis through Piezo1-Src-YAP axis. Life Sciences, 308, 120936.

Article  CAS  PubMed  Google Scholar 

Piskounova, E., et al. (2015). Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 527(7577), 186–191.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Schafer, Z. T., et al. (2009). Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature, 461(7260), 109–113.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica Et Biophysica Acta, 1863(12), 2977–2992.

Article  CAS  PubMed  Google Scholar 

Que, Z., et al. (2019). Jingfukang induces anti-cancer activity through oxidative stress-mediated DNA damage in circulating human lung cancer cells. Bmc Complementary and Alternative Medicine, 19(1), 204.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif