Lipid metabolism and its implications in tumor cell plasticity and drug resistance: what we learned thus far?

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Article  PubMed  Google Scholar 

Graham, T. A., & Sottoriva, A. (2017). Measuring cancer evolution from the genome. The Journal of Pathology, 241(2), 183–191. https://doi.org/10.1002/path.4821

Article  PubMed  Google Scholar 

Cagan, R., & Meyer, P. (2017). Rethinking cancer: Current challenges and opportunities in cancer research. Disease Models & Mechanisms, 10(4), 349–352. https://doi.org/10.1242/dmm.030007

Article  Google Scholar 

Barrios, C. H., Werutsky, G., & Martinez-Mesa, J. (2015). The global conduct of cancer clinical trials: challenges and opportunities. American Society of Clinical Oncology Education Book, e132–139. https://doi.org/10.14694/EdBook_AM.2015.35.e132

Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

Article  PubMed  Google Scholar 

You, M., Xie, Z., Zhang, N., Zhang, Y., Xiao, D., Liu, S., et al. (2023). Signaling pathways in cancer metabolism: Mechanisms and therapeutic targets. Signal Transduction and Targeted Therapy, 8(1), 196. https://doi.org/10.1038/s41392-023-01442-3

Article  PubMed  PubMed Central  Google Scholar 

Juliano, R. L. (2020). Addressing cancer signal transduction pathways with antisense and siRNA oligonucleotides. NAR Cancer, 2(3), zcaa025. https://doi.org/10.1093/narcan/zcaa025

Article  PubMed  PubMed Central  Google Scholar 

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013

Article  PubMed  Google Scholar 

Frohling, S., & Dohner, H. (2008). Chromosomal abnormalities in cancer. New England Journal of Medicine, 359(7), 722–734. https://doi.org/10.1056/NEJMra0803109

Article  PubMed  Google Scholar 

Nong, S., Han, X., Xiang, Y., Qian, Y., Wei, Y., Zhang, T., et al. (2023). Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (2020), 4(2), e218. https://doi.org/10.1002/mco2.218

Article  PubMed  Google Scholar 

Koppenol, W. H., Bounds, P. L., & Dang, C. V. (2011). Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Reviews Cancer, 11(5), 325–337. https://doi.org/10.1038/nrc3038

Article  PubMed  Google Scholar 

Rohrig, F., & Schulze, A. (2016). The multifaceted roles of fatty acid synthesis in cancer. Nature Reviews Cancer, 16(11), 732–749. https://doi.org/10.1038/nrc.2016.89

Article  PubMed  Google Scholar 

Martin-Perez, M., Urdiroz-Urricelqui, U., Bigas, C., & Benitah, S. A. (2022). The role of lipids in cancer progression and metastasis. Cell Metabolism, 34(11), 1675–1699. https://doi.org/10.1016/j.cmet.2022.09.023

Article  PubMed  Google Scholar 

Fu, Y., Zou, T., Shen, X., Nelson, P. J., Li, J., Wu, C., et al. (2021). Lipid metabolism in cancer progression and therapeutic strategies. MedComm (2020), 2(1), 27–59. https://doi.org/10.1002/mco2.27

Article  PubMed  Google Scholar 

Su, X., & Abumrad, N. A. (2009). Cellular fatty acid uptake: A pathway under construction. Trends in Endocrinology and Metabolism, 20(2), 72–77. https://doi.org/10.1016/j.tem.2008.11.001

Article  PubMed  Google Scholar 

Abumrad, N., Coburn, C., & Ibrahimi, A. (1999). Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36 FATP and FABPm. Biochimica et Biophysica Acta, 1441(1), 4–13. https://doi.org/10.1016/s1388-1981(99)00137-7

Article  PubMed  Google Scholar 

Anderson, C. M., & Stahl, A. (2013). SLC27 fatty acid transport proteins. Molecular Aspects of Medicine, 34(2–3), 516–528. https://doi.org/10.1016/j.mam.2012.07.010

Article  PubMed  PubMed Central  Google Scholar 

Liu, W., Chakraborty, B., Safi, R., Kazmin, D., Chang, C. Y., & McDonnell, D. P. (2021). Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nature Communications, 12(1), 5103. https://doi.org/10.1038/s41467-021-25354-4

Article  ADS  PubMed  PubMed Central  Google Scholar 

Ladanyi, A., Mukherjee, A., Kenny, H. A., Johnson, A., Mitra, A. K., Sundaresan, S., et al. (2018). Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 37(17), 2285–2301. https://doi.org/10.1038/s41388-017-0093-z

Article  PubMed  PubMed Central  Google Scholar 

Tousignant, K. D., Rockstroh, A., Taherian Fard, A., Lehman, M. L., Wang, C., McPherson, S. J., et al. (2019). Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer disease progression and bone metastasis. Molecular Cancer Research, 17(5), 1166–1179. https://doi.org/10.1158/1541-7786.MCR-18-1147

Article  PubMed  Google Scholar 

Zaidi, N., Lupien, L., Kuemmerle, N. B., Kinlaw, W. B., Swinnen, J. V., & Smans, K. (2013). Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Progress in Lipid Research, 52(4), 585–589. https://doi.org/10.1016/j.plipres.2013.08.005

Article  PubMed  PubMed Central  Google Scholar 

Mashima, T., Seimiya, H., & Tsuruo, T. (2009). De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British Journal of Cancer, 100(9), 1369–1372. https://doi.org/10.1038/sj.bjc.6605007

Article  PubMed  PubMed Central  Google Scholar 

Swinnen, J. V., Brusselmans, K., & Verhoeven, G. (2006). Increased lipogenesis in cancer cells: New players, novel targets. Current Opinion in Clinical Nutrition and Metabolic Care, 9(4), 358–365. https://doi.org/10.1097/01.mco.0000232894.28674.30

Article  PubMed  Google Scholar 

Kamphorst, J. J., Cross, J. R., Fan, J., de Stanchina, E., Mathew, R., White, E. P., et al. (2013). Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proceedings National Academy of Science U S A, 110(22), 8882–8887. https://doi.org/10.1073/pnas.1307237110

Article  ADS  Google Scholar 

Young, R. M., Ackerman, D., Quinn, Z. L., Mancuso, A., Gruber, M., Liu, L., et al. (2013). Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes & Development, 27(10), 1115–1131. https://doi.org/10.1101/gad.198630.112

Article  Google Scholar 

Argiles, J. M., Busquets, S., Stemmler, B., & Lopez-Soriano, F. J. (2014). Cancer cachexia: Understanding the molecular basis. Nature Reviews Cancer, 14(11), 754–762. https://doi.org/10.1038/nrc3829

Article  PubMed  Google Scholar 

Hopperton, K. E., Duncan, R. E., Bazinet, R. P., & Archer, M. C. (2014). Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity. Experimental Cell Research, 320(2), 302–310. https://doi.org/10.1016/j.yexcr.2013.10.016

Article  PubMed  Google Scholar 

Auciello, F. R., Bulusu, V., Oon, C., Tait-Mulder, J., Berry, M., Bhattacharyya, S., et al. (2019). A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discovery, 9(5), 617–627. https://doi.org/10.1158/2159-8290.CD-18-1212

Article  PubMed  PubMed Central  Google Scholar 

Snaebjornsson, M. T., Janaki-Raman, S., & Schulze, A. (2020). Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer. Cell Metabolism, 31(1), 62–76. https://doi.org/10.1016/j.cmet.2019.11.010

Article  PubMed  Google Scholar 

Fendt, S. M., Frezza, C., & Erez, A. (2020). Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Cancer Discovery, 10(12), 1797–1807. https://doi.org/10.1158/2159-8290.CD-20-0844

Article  PubMed  PubMed Central  Google Scholar 

Koundouros, N., & Poulogiannis, G. (2020). Reprogramming of fatty acid metabolism in cancer. British Journal of Cancer, 122(1), 4–22. https://doi.org/10.1038/s41416-019-0650-z

Article  PubMed  Google Scholar 

Broadfield, L. A., Pane, A. A., Talebi, A., Swinnen, J. V., & Fendt, S. M. (2021). Lipid metabolism in cancer: New perspectives and emerging mechanisms. Developmental Cell, 56(10), 1363–1393. https://doi.org/10.1016/j.devcel.2021.04.013

Article  PubMed  Google Scholar 

Buhrmann, C., Brockmueller, A., Harsha, C., Kunnumakkara, A. B., Kubatka, P., Aggarwal, B. B., et al. (2021). Evidence that tumor microenvironment initiates epithelial-to-mesenchymal transition and calebin A can suppress it in colorectal cancer cells. Frontiers in Pharmacology, 12, 699842. https://doi.org/10.3389/fphar.2021.699842

Article  PubMed  PubMed Central  Google Scholar 

Kunnumakkara, A. B., Bordoloi, D., Sailo, B. L., Roy, N. K., Thakur, K. K., Banik, K., et al. (2019). Cancer drug development: The missing links. Experimental Biology and Medicine (Maywood, N.J.), 244(8), 663–689. https://doi.org/10.1177/1535370219839163

Article  PubMed  Google Scholar 

Lv, L., Yang, S., Zhu, Y., Zhai, X., Li, S., Tao, X., et al. (2022). Relationship between metabolic reprogramming and drug resistance in breast cancer. Frontiers in Oncology, 12, 942064. https://doi.org/10.3389/fonc.2022.942064

Article  PubMed  PubMed Central  Google Scholar 

Chen, X., Chen, S., & Yu, D. (2020). Metabolic reprogramming of chemoresistant cancer cells and the potential significance of metabolic regulation in the reversal of cancer chemoresistance. Metabolites, 10(7),https://doi.org/10.3390/metabo10070289

Goncalves, A. C., Richiardone, E., Jorge, J., Polonia, B., Xavier, C. P. R., Salaroglio, I. C., et al. (2021). Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resistance Updates, 59, 100797. https://doi.org/10.1016/j.drup.2021.100797

Article 

留言 (0)

沒有登入
gif